
by

Jonathan Trumbull Foote

B.S.E.E., Cornell University, 1985
M.Eng., Cornell University, 1986

Thesis

Submitted in partial ful�llment of the requirements for
the Degree of Doctor of Philosophy

in the Division of Engineering at Brown University

May 1994

Decision-Tree Probability Modeling

for HMM Speech Recognition

c Copyright

by

Jonathan Trumbull Foote

1993

This dissertation by Jonathan Trumbull Foote is accepted in its present form by
the Division of Engineering as satisfying the
dissertation requirement for the degree of

Doctor of Philosophy

Date .
Harvey F. Silverman

Recommended to the Graduate Council

Date .
Stephen E. Levinson

Date .
David B. Cooper

Approved by the Graduate Council

Date .

ii

The Vita of Jonathan Trumbull Foote

Jonathan T. Foote was born in 1963 in Hollywood, California. He attended public schools

in Santa Monica, California, somehow without learning how to surf. He received a Bachelor

of Science (Electrical Engineering) degree in 1985 and a Master of Engineering (Electrical)

degree in 1986 from Cornell University. From 1986 to 1988 he worked as a development

engineer for Teradyne, Inc. in Boston, Massachusetts. From 1988 to 1993 he has been at

Brown University working towards a Ph.D. in Electrical Engineering. He received an Out-

standing Research Award from the Brown University Chapter of Sigma Xi in 1992, and a

Brown Presidential Teaching Award in 1993. He is a member of IEEE, Sigma Xi, Com-

puter Professionals for Social Responsibility, and the American Association for Engineering

Education. He is also a professional musician, and enjoys not sur�ng in his free time.

iii

I

iv

N the days when the white engineers were disputing the attributes of the feeder
system that was to be, one of them came to to Enzian of Bleicher�ode and said,

\We cannot agree on the chamber pressure. Our calculations show that a working
pressure of 40 at�u would be most desirable. But all the data we know are grouped
around a value of only some 10 at�u."

\Then clearly," said the Nguarorerue, \you must listen to the data."

\But that would not be the most perfect or e�cient value," protested the German.

\Proud man," said the Nguarorerue, \what are these data, if not direct revelation?
Where have they come from, if not the Rocket which is to be? How do you presume
to compare a number which you have only derived on paper with a number that
is the Rocket's own?"

From , ed. Steve Edelman

[Thomas Pynchon,]

Tales of the Schwartzkommando

Gravity's Rainbow

2.1 Tree Construction 7

2.2 Splitting Rules 8

2.2.1 Mutual Information 9

2.2.2 A Simple Example 12

2.2.3 Dependence of MMI Split on Class Priors 15

2.3 Stopping Rules 17

2.3.1 Delta-Entropy 17

2.3.2 Mass-proportional mutual information 18

2.3.3 Dimensional Ranking 19

2.4 Pruning 20

2.5 Labeling Rules 22

vi

: :

: :

: :

: :

: : : : : : : : : : : : : : :

: :

: :

: : : : : : : : : : : : : : : : :

: :

: :

: :

Epigraph iv

Acknowledgments v

1 Introduction 1

2 Decision Trees 5

Contents

3.1 Discrete models 26

3.2 Continuous models 28

3.2.1 Neural-Network-Based Probability Models 30

3.3 Tree-based Probability Models 31

4.1 Labeling Speech Data 35

4.2 Tree Probability Models for Speech 37

4.3 Estimating Tree PDFs 38

4.3.1 Baum-Welch Estimation of Tree PDFs 38

4.3.2 Viterbi Training 39

4.4 Context Modeling 41

4.4.1 Time-Recurrent Trees 42

4.5 Rocks and Hard Places: Undertraining and Over�tting 43

4.6 Decision Trees for Speech Recognition 44

4.7 Analysis of Complexity 47

4.7.1 Classi�er Training Cost 48

4.7.2 Classi�cation Cost 50

4.7.3 Model Storage Requirements 50

5.1 The Speech Recognition System 52

5.1.1 The baseline HMM system 55

5.2 Tree-based probability models 56

vii

: :

: :

: : : : : : : : : : : : : : :

: :

: :

: :

: :

: : : : : : : : : : : : : : : : :

: :

: :

: :

: : : : : : : : : : : :

: :

: :

: :

: :

: :

: :

: :

: :

3 Hidden Markov Models 23

4 Tree-based Probability Models 35

5 Experimental Results 52

lems

5.2.1 Codebooks and Independence 56

5.3 Analysis of Dimensional Importance 58

5.4 Explicit Context Modeling 62

5.4.1 Run-Length Adjustment 63

5.5 Output Probability Smoothing 67

5.6 Tree-based HMM recognition 68

5.7 Gender-Dependent Modeling 70

5.7.1 Classi�cation Error vs. Recognition Performance 73

5.8 Talker Adaptation 75

5.9 Comparative Recognition Performance 78

6.1 Possible Applications of Tree-based Models 82

6.1.1 Talker Independence from \Eigentalker" Models 82

6.1.2 Model Distance Measures 83

6.1.3 Environmental Robustness 84

6.1.4 Feature Set Ranking 84

6.2 Conclusion 85

viii

: :

: :

: :

: :

: :

: :

: :

: : : : : : : : : : :

: :

: :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : :

: :

: :

: :

: :

6 Future Applications and Conclusions 80

2.1 Greedy tree construction algorithm. 7

4.1 Summary of cost parameters. 49

4.2 Comparative costs of probability models. 51

5.1 Typical utterances (after Hochberg [37]). 52

5.2 The Speech Database. 53

5.3 Recognition error of gender-dependent model experiments. 71

ix

: :

: :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

: :

: : : : : : : : : :

List of Tables

lems

2.1 A decision tree. 6

2.2 Example two-class distribution. 12

2.3 Classi�cation tree partition. 13

2.4 Entropy and information vs. split threshold. 14

2.5 Example probability density functions. 16

2.6 Threshold vs. class prior probabilities. 16

2.7 Four-class splitting example. 19

2.8 Tree size vs. pruning threshold. 21

3.1 Hidden Markov model. 24

3.2 Vector Quantization. 27

3.3 Continuous Mixture Density. 29

3.4 Tree quantization. 32

4.1 Contextual input to decision tree. 36

4.2 A time-recurrent decision tree. 42

5.1 Speech recognition system block diagram. 55

5.2 Tree-based HMM recognition system. 56

x

: :

: :

: :

: : : : : : : : : : : : : : : : : :

: :

: :

: :

: :

: :

: :

: :

: :

: :

: :

: : : : : : : : : : : : : : : : : : :

: :

List of Figures

5.3 Split information of features. 59

5.4 Split information of features where cepstral coe�cients 4 and 5 have been

replaced with uncorrelated noise. 60

5.5 Split information of double-di�erenced cepstral coe�cients. 61

5.6 Context and stride for tree input. 63

5.7 Context dependency: split information vs. stride. 64

5.8 Insertion errors vs. stride. 65

5.9 Recognition performance vs. probability
oor. 67

5.10 Recognition performance vs. tree size. 69

5.11 Individual talker performance on gender-dependent tree models. 72

5.12 Tree classi�cation error vs. recognition performance. 74

5.13 Talker-dependent Recognition Performance. 76

xi

: :

: :

: : : : : : : : :

: :

: : : : : : : : : : : : : : :

: :

: : : : : : : : : : : : : : : : :

: :

: : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

The process of automatic speech recognition (ASR) starts with a digitized representation

of speech. Since this must be sampled several thousand times a second for reasonable

�delity, a typical short utterance needs several kilobytes of data to represent the same

information (what was said) that could be written with a handful of characters.

Clearly there is redundant, if not useless, information in the speech signal. The essence of

speech recognition, or indeed any classi�cation task, is to eliminate noise and redundancy,

leaving only the true information content [87]. To do this, a good model of the underlying

process is essential.

Hidden Markov models (HMMs) are a powerful and well-characterized method for speech

recognition. HMMs o�er a computationally reasonable way to model complex time-varying

processes like speech; however, they rely on a set of assumptions about the speech process

which may be inaccurate. It may be argued that over the past decade, progress in ASR

has consisted primarily of tweaking and patching HMM systems to overcome some of their

1

You must bear in mind that the speech-game is, so to say, unpredictable.
I mean: it has no grounds. It is not reasonable (or unreasonable).

It is there|like our life.

Ludwig Wittgenstein

Introduction

ascii

Chapter 1

more egregious limitations. The work presented here continues in this proud tradition.

While there are a number of questionable HMM assumptions, the ones most pertinent

to this work are as follows:

A HMM is built and trained to maximize the likelihood that it generates a desired

acoustic signal. Given di�erent models, the one which generated the observed acoustic

signal with the highest likelihood is considered to be the recognized word. Unfortu-

nately, there is a fundamental mismatch between training and recognition: it is not

important how well the model actually represents the speech signal! The only re-

quirement is that the correct model be much more likely than the others, given the

observed data. A good recognition strategy will not waste e�ort modeling every nu-

ance of the speech signal; better performance may be obtained at less expense by

modeling only those aspects of speech which are semantically useful, i.e. those that

carry information about what was said. For example, the pitch of spoken English

carries little information (except, perhaps, for second-order e�ects like prosodic cues)

and is usually not modeled.

In a typical HMM, the probability that a given acoustic vector is emitted by a certain

state depends only on that state and is conditionally independent of the past. This

is called the and almost certainly does not re
ect the

true character of the speech signal, which at any instant is more-or-less correlated

with preceding and following events.

A HMM implicitly assumes that the choice of acoustic parameters is good. These are

representations of the acoustic signal, chosen to preserve the semantic information in

the speech signal while drastically reducing the dimensionality. (A typical parame-

2

�

�

�

independent-output assumption

terization encodes 20 ms of speech data into 26 parameters). The parameterization

must be chosen before any training or classi�cation, and there no guarantee

that the most popular parameterization is in any way optimal.

The work presented here describes an alternate method of probability estimation using

decision trees. Using decision trees can mitigate the e�ects of the bad assumptions just

described. Because trees are built in a supervised manner, useful variations are (hopefully)

modeled while information-poor variability is not. The independent-output assumption is

circumvented to some extent by considering the time-varying properties of the acoustic

signal. Though this makes for a more complicated (higher-dimensional) feature space, the

supervised training extracts the relevant information, and is shown to directly improve

recognition performance. As a side-e�ect of the tree-based probability model, the relative

importance of the individual acoustic parameters may be measured. This can lead to better

parameterizations by providing a means to select those with higher importance.

The basic principles behind decision trees are discussed in Chapter 2, as well as the

speci�c features used to construct tree-based probability models. Chapter 3 presents back-

ground information on HMMs, while Chapter 4 details how the tree-based models are

trained and how they are integrated into the HMM system. Chapter 4 also summarizes

similar previous work, and presents a brief analysis of computation and storage require-

ments of tree-based models relative to other types.

Chapter 5 presents experimental results on a connected-word talker-independent al-

phadigit recognition system at Brown University. The alphadigit set is generally regarded

as the most di�cult small-vocabulary set due to its many highly-confuseable words (e.g.

the -set , , , , , , , ,) and word pairs (e.g. { vs. 8{). Research

at the Laboratory for Engineering Man-machine Systems () is focused on the sig-

3

E B C D E G P T V Z A T E

a priori

lems

nal processing and acoustic modeling aspects of speech recognition, rather than language

modeling. Consequently the alphadidgit task was chosen for both for its di�culty and its

small size. A small-vocabulary system means that the intricacies of a language model can

be dispensed with, yet good performance on the alphadigit task will require state-of-the-art

feature extraction and acoustic modeling.

4

This chapter discusses the principles and construction of decision trees. A decision

tree is loosely de�ned as a hierarchical classi�cation procedure determined by a sequence

of questions. Once the �rst question has been asked, the choice of subsequent questions

depends on the answer to the current question. This can be represented by a directed graph

known as a tree. Figure 2.1 shows a decision tree. Questions are asked at \nodes;" the �rst

question is asked at the \root node." The answer to a question posed at a particular node

will select the appropriate \branch" to further nodes. A terminal node with no branches is

known as a \leaf." The game \twenty questions" and a binary search are common examples

of decision trees; they show how a small number of questions can select the right outcome

(leaf) from among a very large number of possibilities.

Decision trees are a well-known and much-used weapon in the classi�cation arsenal;

they have been used for tasks as diverse as character recognition [24, 81, 22], associative

searching [11], natural language modeling [4], and even medical diagnosis [18]. The types

and methodologies of decision trees are diverse as the possible applications, therefore the

discussion here will be restricted to the type most practical for the probability-estimation

5

Tao Te Ching

Once the whole world is divided the parts need names.
There are already enough names.

One must know when to stop.
Knowing when to stop averts trouble.

Decision Trees

Chapter 2

ot

… …Leaves

… …

Nodes

l j l j+1 l J1
l

…
? ?

?

TF

 Test
 ?

 Root

1

1

Tests with more than two answers can be used, yielding a -ary rather than a binary tree. In general,
a single -ary test can usually be accomplished with several binary tests. The hyperplane splits considered
here have a naturally binary outcome, so discussion will be restricted to the binary case.

n

n

Figure 2.1: A decision tree.

task detailed in Chapters 3 and 4. This involves partitioning a high-dimensional feature

space, which may be done using a particular tree structure called a -d (-dimensional)

tree.

A particular vector must be on one side or another of a given hyperplane; this test

can serve as the binary question at a node of a decision tree . A more restricted test is

to compare one dimension (element) of the vector with a scalar threshold; this produces a

hyperplanar decision boundary perpendicular to the axis of the decision dimension. The

feature space is divided into two regions by the test hyperplane; these regions may then be

similarly subdivided in a recursive fashion. The end result is the feature space is partitioned

into a number of non-overlapping (also called \buckets"), each of which correspond to

a leaf of the tree. (Figure 3.4 illustrates such a partition for a two-dimensional space with

one-dimensional tests.)

6

K K

cells

d

d

l d d

Table 2.1: Greedy tree construction algorithm.

Because the construction of optimal decision trees is NP-hard [42], they are typically

grown using a greedy strategy [18, 24, 6]. In practice, greedy trees grown in a top-down

manner work quite well. The greedy algorithm (summarized in Table 2.1) works as follows:

�rst, �nd the best split threshold for all the data. This is the hyperplane normal to

dimension with axis intercept that best separates the data, according to some goodness

measure called the . Thus is found by maximizing the split criterion over

all possible thresholds in all possible dimensions . (Computationally, this may be done

with a brute-force search which is guaranteed to �nd the global maximum of the split

criterion. A gradient-ascent approach will run much faster because only a small subset of

possible thersholds are considered, hovever the global maximum may not be found.) The

�rst threshold found corresponds to the �rst node in the classi�cation tree. The left child

then inherits the set of training samples less than the threshold : while the right

child inherits the complement. The splitting process is repeated recursively on each child,

which results in further thresholds and nodes in the tree. At some point, a stopping rule

decides that further splits are not worthwhile, and the splitting process is stopped. Three

rules characterize a tree-growing strategy:

7

t

d d t

t

t d

X x < t

split criterion

0. Start with all labeled data.

1. While stopping condition is unmet, do:

2. Find best split threshold over all thresholds and dimensions.

3. Send data to left or right child depending on threshold test.

4. Recursively repeat steps 1{4 for left and right children.

2.1 Tree Construction

1. A that determines where the decision threshold is placed, given the data

in a node. For -d trees, any linear combination of the input data may be used;

often (as is the case here) only univariate splits are considered, resulting in decision

boundaries normal to the coordinate axes.

2. A that determines when the recursion ends. This is the rule that deter-

mines whether a node is a leaf node. (An alternate strategy is to use a lenient stopping

rule to generate a very large tree, which may then be pruned to �nd a smaller and

potentially better subtree.)

3. A that assigns some value or class label to every leaf node. This is usually

chosen to minimize some distance or distortion measure between the data in the leaf

and a class label (classi�cation) or functional estimate (regression). For the trees

considered here, leaves will be associated (labeled) with the state-conditional output

probabilities used in the HMM.

The splitting rule for a given node partitions the cell volume into two partitions, correspond-

ing to the left and right children. In general, this can be any arbitrary partition. Because

the space of possible partitions is enormous, �nding the optimal general partition is not

really practical (though work as been done using neural networks and other approaches,

q.v. Section 4.6). Typically, the partition is constrained to be a hyperplane. Though prob-

ably suboptimal, the optimal hyperplane is straightforward both to �nd and use as a test.

A further simpli�cation is to only consider hyperplanes normal to a coordinate axis; thus

only one feature dimension need be tested. Thus to �nd a split, each dimension is searched

8

K

splitting rule

stopping rule

labeling rule

2.2 Splitting Rules

j i

i j

independently for a threshold (the hyperplane intercept) that maximizes the split criterion

or \purity," which is some measure of how well the split separates the classes. Splitting a

cell results in two subcells, each with its own class distribution; it is desired to split the

cell so the two distributions are . This naturally requires a distance

metric, of which there exist a large variety (see [23] for a catalogue of di�erent

metrics). A useful and often-used metric is the mutual information, which will be used here

exclusively.

An excellent split criterion is the mutual information (MI) between the data and the class

labels given the split. This metric has been proposed as early as 1962 [58], and has been

used for tree-growing by several investigators [81, 1]. The MI is a quantitative measure of

how much information a particular feature yields about the class it came from. For any

split, the MI between the data and the classes may be easily calculated; the split that gives

the maximum mutual information (MMI) is then selected as the decision for that node.

The mutual information is de�ned between di�erent partitions of an underlying, discrete

probability space, which may be thought of as the space of all possible outcomes of a given

experiment. Let denote a discrete partition of the feature space corresponding to a set

of experimental outcomes (e.g. VQ codes or tree leaves), while represents the partition

corresponding to the class labels of the outcomes (e.g. the phonetic class of each VQ code

or tree leaf). If the joint probability that a certain event has class label is

Pr(), then the mutual information (MI) between the events and the pattern classes is

9

X

C

x X c C

c ; x

2 2

as di�erent as possible

thirteen

2.2.1 Mutual Information

2

2

2

2

i j

i j
i j

i j

i j

j i
j i

j

i

i i

j

j

i

j

j

j

i

i j i j

j i i j

d

d d

4

[27]

(;) = Pr() log
Pr()

Pr() Pr()
(2.1)

= () () (2.2)

= () () (2.3)

= Pr() log
Pr()

Pr()
(2.4)

where () is the Shannon entropy function, in bits:

() = Pr(=) log (Pr(=)) (2.5)

and the conditional entropy () is

() = Pr(=) (=) (2.6)

= Pr(=) Pr(= =) log (Pr(= =)) (2.7)

Note that if the distributions are independent, then Pr() = Pr() Pr() so the

log term in Equation 2.1 becomes zero. Thus the mutual information between independent

random variables is zero. From the classi�cation viewpoint, this is the common-sense state-

ment that a data distribution independent of the classes gives no information about the

classes.

To calculate the mutual information of a split, consider a threshold in dimension .

This will split the data into two partitions = , such that

: (2.8)

10

I X C c ; x
c ; x

c x

H X H X C

H C H C X

x ; c
x c

c

H

H X X x X x

H X Y

H X Y Y y H X Y y

Y y X x Y y X x Y y :

x ; c c x

t d

X X Xa;Xb

Xa x t

� j

� j

j

�

�

j

j � j

� j j

f g

�

XX

XX

X

X X
X X

2 2

2 2

d d

j

ij

i d d

i d d

i i

i
ij

j

i
i

ij

i

i i

i

i i

i

ij

j

ij

j i

ij i

ij

: (2.9)

i.e. is the set of data points such that the th dimension of the feature is above

the threshold and the set of points where it is below. The mutual information from a

partition (;) given any and is easily estimated from training samples in the following

manner. Over the volume of the current node, count the relative frequencies:

= Total number of data points in cell (2.10)

= Number of data points in cell from class (2.11)

= Number of data points from class : (2.12)

= Number of data points from class : (2.13)

In the region, de�ne () to be the probability of class and () as the proba-

bility that a member of class is below the given threshold. These probabilities are easily

estimated as follows: (for clarity of notation, conditioning on the threshold is not indicated)

Pr() (2.14)

Pr() (2.15)

With these probabilities, the mutual information given the threshold is [27]

(;) = () () (2.16)

= Pr() log Pr() + Pr() (Pr()) (2.17)

log + (2.18)

11

Xb x < t

Xa d x

Xb

I X C t d

N j

NC j i

NXa i x t

NXb i x < t

Pr c i Pr Xb

i

c
NC

N

Xb
NXb

NC

I X C H C H C X

c c c H Xb

NC

N

NC

N

NC

NX
H

NXb

NC

�

�

�

� j

�

� �

X X
X X !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X dimension

Y
 d

im
en

si
on

2

2 2 2

Figure 2.2: Example two-class distribution.

where is the binary entropy function

() = log () (1) log (1) (2.19)

This is a convex function of the threshold value, and is also less than or equal to one (one

bit is the most information that can be obtained by a binary split).

For the purposes of demonstration, consider the two-class distribution of Figure 2.2. The

class-independent distribution is uniform on the unit square. Data points are labeled as

class zero (\ ") if the sum of the and coordinates is less than one or class one (\+") if

greater. The two classes are linearly separable, but the decision boundary is not parallel to a

coordinate axis. A tree-based classi�er can nonetheless approximate the decision boundary

12

H

H x x x x x :

x y

� � � �

�

2.2.2 A Simple Example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X dimension

Y
 d

im
en

si
on

Class 1

Class 0

2

2

0 0 1 1

Real-world distributions are rarely so accommodating.

Figure 2.3: Classi�cation tree partition.

to arbitrary accuracy, even using decision planes constrained to be normal to coordinate

axes, as shown in Figure 2.3. (Of course, linear-discriminant analysis could �nd a projection

making this distribution separable with one decision boundary ; the point is that a decision

tree can do on possible distribution, regardless of decision boundary

shape.) Here, the leaf cells are colored according to the most probable class in the cell, i.e.,

the class with the most data points in that cell.

Figure 2.4 shows how the MMI splitting threshold is determined. In a two-class problem,

Equation 2.3 may be written

(;) = () Pr() () Pr() () (2.20)

For the distribution of Figure 2.2 projected onto dimension , these four quantities are

13

I X C H X c H X c c H X c :

X

� j � j

equally badly any

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Split Threshold

In
fo

rm
at

io
n

(b
its

)

H(X)

I(X;C)

H(X|c0) H(X|c1)

0 1

Figure 2.4: Entropy and information vs. split threshold.

plotted as a function of the threshold in Figure 2.4. Here, the action of the various terms may

be seen. Because the total density is uniform over [0,1], () is the familiar binary entropy

function (equation 2.19). This is maximum at the center of gravity of the class-independent

distribution, regardless of its form; i.e. that split which divides the cells into two equal-

probability volumes. (This is a nice feature as it tends to keep the tree relatively balanced:

the two halves of a split node will tend to have roughly equal probability masses). Subtracted

from () are the two class-conditional entropies () and (), weighted by

the relative priors. These are maximized at the center of mass of the class-conditional

distributions, but since these terms are subtracted, they tend to bias the threshold

from the means of the classes, while () forces the threshold towards the center of the

total distribution. Note that the mutual information is maximized at a threshold of 0.5;

this corresponds to the vertical line in the center of Figure 2.3, which is the �rst split in

14

H X

H X H X c H X c

H X

j j

away

the decision tree.

Consider the distribution of Figure 2.2 with unequal class priors; i.e. one class has more

members than another. Projected onto a single dimension, this results in the pdf shown in

Figure 2.5, where the prior probability of a data point coming from class 0 is and from

class 1 is (1). The Bayes threshold is the threshold that minimizes the classi�cation error,

shown as the crosshatched area in Figure 2.5. Contrary to statements published elsewhere

[81], the threshold that maximizes (;) is not necessarily the threshold that minimizes

the Bayes probability of error. Figure 2.6 shows the threshold variation as a function of class

prior probabilities for the two-class distribution of Figure 2.5. The Bayes threshold is very

dependent on the class priors, while the MMI threshold is nearly insensitive to them. Some

may be distressed by the fact that the MMI boundary does not minimize classi�cation error;

this is certainly distressing if the tree is used to discriminate between classes with known

prior probabilities. For some applications, however, the priors are known, in which

case the MMI boundary will be more robust if class priors vary signi�cantly. For speech

recognition, class prior probabilities should be determined by the language model, not the

acoustic model, which ideally should not be biased by the relative frequencies of classes in

the training data [66]. In any case, the trees are not (primarily) used as classi�ers but rather

to partition the feature space into regions that are meaningfully acoustically di�erent. For

this task, the boundaries should be relatively insensitive to the prior probabilities, as the

MMI criterion will ensure.

15

p

p

I X C

�

not

2.2.3 Dependence of MMI Split on Class Priors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class 0 Prior Probability

C
la

ss
 B

ou
nd

ar
y

MMI Boundary

Bayes Boundary

.5 10

2p

2(1 − p)

Threshold

Class 0

Class 1

Figure 2.5: Example probability density functions.

Figure 2.6: Threshold vs. class prior probabilities.

16

2
i

i i

A second part of a tree growing strategy is the stopping criterion. This is a rule or set of

rules that de�ne the termination condition for the recursive splitting. An e�ective stopping

rule is to terminate splitting when the number of training points in the cell falls below some

threshold, but this rule may be too simplistic because it does not consider the goodness of

the possible splits. On the other hand, the MMI criterion of Section 2.2.1 works well for

�nding good splits, but is a poor stopping condition because it is generally non-decreasing.

(Imagine a tiny cell containing only two data points from di�erent classes: splitting the

cell so that each side gets a class yields an entire bit of mutual information. Bigger cells

with overlapping distributions have less mutual information.) This motivates other ways of

�nding when further splitting is not worth the e�ort. In practice, trees are commonly grown

quite large, and then pruned to the desired size, so the stopping criterion is not especially

critical.

One of the simplest stopping criteria is to look at the di�erence between the class entropy

of the current node and that of its parent. The class entropy () is simply the entropy

function of the (discrete) class distribution of the node.

() = Pr() log Pr() (2.21)

If the class entropy () from the best split of this node is less than some fraction of

the parental best-split (), then the node is considered a leaf and splitting is stopped.

(Typically, stopping and pruning thresholds like the delta-entropy fraction are determined

17

H C

H C c c

H C

H C

�

2.3.1 Delta-Entropy

2.3 Stopping Rules

X

j

j
j

j

empirically, by adjusting the threshold until a tree of desired size is obtained.)

If the number of points in a node is small, the probability estimates for that node will tend

to be unreliable. This motivates a stopping metric where the best-split mutual information

is weighted by the probability mass inside the cell to be split:

stop() = (;) (2.22)

Further splits are not considered when this metric falls below some threshold. This

criterion has the bene�t that it excludes splits that might be suspect because of insu�cient

data points in the cell. The mass-weighted MMI criterion thus insures that splitting is not

continued:

If the split criterion is not large enough.

If the probability mass in this bin is small enough that there are too few points to

reliably estimate the split criterion.

The mass-weighted MMI criterion has some additional nice properties:

It is a strictly decreasing function of depth in the tree, so that a �xed threshold will

always yield a �nite tree, regardless of the data distribution.

It facilitates a simple tree pruning algorithm.

It is very simply computed, by Equation 2.22.

It preserves dimensional importance, as discussed in the next section (2.3.3).

18

l

l
N

N
I X C

�

�

�

�

�

�

2.3.2 Mass-proportional mutual information

� �

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Dimension X

D
im

en
si

on
 Y

split 1

split 2 split 3

Figure 2.7: Four-class splitting example.

An interesting aspect of information trees is that they can give valuable information about

the relative importance of each dimension in the feature space. If a given dimension is never

used for a split, then it can be assumed that that dimension yields little or no information

about the classes, and could be ignored with little loss. Conversely, if most splits occur in

a few dimensions, then those dimensions are most important to the classi�er, and could be

emphasized.

It is not obvious how to accurately quantify the dimensional information yielded by

the splits. A naive approach might be to simply divide the number of splits in a given

dimension by the total number of splits, but this con
icts with the intuition that splits

lower in the tree yield less information than ones higher up. Slightly better is to consider

the mass-weighted MMI gain summed across all splits in a dimension. This works well for

19

2.3.3 Dimensional Ranking

2

simple cases. Consider a two-dimensional problem with four equiprobable, separable classes

as in Figure 2.7.

The entropy of the classes is two bits (log (4)), and because they are separable, the

mutual information between the data and the classes should be two bits as well. (Given a

data point, we can �nd the class it came from with no uncertainty.) Arbitrarily, do the �rst

split vertically. This gives one bit of mutual information (the best you can do with a binary

split). This makes sense|given the result of the split test, we have reduced our uncertainty

about the classes from four equiprobable classes to two. Now the next split also gives one

bit of information, but because the cell only has half the data, the metric is one half bit.

Similarly, the third split also yields one half bit of information, so the total metric is two

bits, which agrees with intuition. Similarly, both dimensions give an equal amount (1 bit)

of information, and are therefore equally important for classi�cation.

An often-used alternative to a given stopping criterion is to build a large tree and to \prune"

it to a smaller size. This is done by changing internal tree nodes to leaves, thus ignoring

further splits at a particular node. Pruning can result in a more optimal tree of a given size

because a low-information node may have high-information children; in a top-down approach

growth would stop at that node but in bottom-up pruning the contribution of the children

would be recognized and the node kept. In the context of speech recognition, pruning allows

the size of the trees, and hence the number of free parameters in the probability model, to

be easily changed.

Optimal tree pruning is analogous to the canonical \0-1 knapsack" problem [26]. As

such, the optimal solution requires a dynamic-programming approach to �nd the desired

20

2.4 Pruning

10
-4

10
-3

10
-2

10
-1

10
1

10
2

10
3

10
4

Prune threshold (bits)

N
um

be
r

of
 n

od
es

Figure 2.8: Tree size vs. pruning threshold.

number of leaves with the best aggregate cost function. In practice, there are a large number

of leaves with similar costs, so a greedy approach will quickly yield a subtree very near,

if not identical to, the optimal subtree. A simple greedy pruning algorithm starts with

the full tree, where each node in the tree has been labeled with the sum of the cost of all

children. A pruning threshold is initialized to the cost of the least-important leaf. As the

pruning threshold is increased, nodes with aggregate costs below the threshold are pruned

until a tree of the desired size remains. Fig. 2.8 demonstrates the tree size as a function

of the pruning threshold. Using the mass-weighted MMI criterion gives a nice empirical

relationship: the number of nodes is roughly equal to the reciprocal of the threshold. This

makes it simple to prune a tree to the desired size.

Another widely-used pruning approach is to make a cost function that depends on both

the size of the tree and the classi�cation error. This is analogous to ,

21

rate distortion coding

where the size of the tree corresponds to the code size (the rate) and the classi�cation

error corresponds to the distortion. A bigger tree means better classi�cation, and there is

some optimal tree size for the desired classi�cation error (the achievable rate for the desired

distortion), which may be found by minimizing the aggregate cost function. This approach

is not suited to the problems considered here, because minimum classi�cation error and tree

size are not really relevant to the probability estimation task.

A decision tree may be used for classi�cation by \labeling" each leaf with an approprate

class label. If a value is used instead of a label, the tree may be used for regression or

function estimation. Decision trees will be integrated with hidden Markov models by using

them to estimate the probability that a given state emitted a certain observation. Thus

with each leaf will be \labeled" with an array of \output" probabilities. The details of this

procedure require an explanation of hidden Markov models, and so will be deferred until

Chapter 4. In Chapter 5, the trees will also be used as classi�ers, by labeling each leaf with

the most probable class among the data points in that leaf. Once again, discussion will be

postponed until Section 5.7.1.

22

2.5 Labeling Rules

1 2

+1

1 2

S

i j ij

ij t j t i

t

t i

i t

t t i

Adaptive Control Processes

Figure 3.1 shows a stereotypical hidden Markov model (HMM) for a speechlike random

process. An HMM is a system which has distinct states . At regular time

intervals (\ticks"), a state must transition to another state with probability

= Pr(= =) (3.1)

where is the state occupied at time . Because the state transitions and outputs depend

only on the current state, the model is (�rst-order) Markov. A path through the HMM

may be denoted as = , again where is the state occupied at time .

At every time , a state emits an \observation" with a state-conditional probability

Pr(=). (An alternate formulation has outputs emitted by the state transitions, or

\arcs"|the two forms are equivalent.) Because actual state sequences (the actions above

the wavy line) are not directly observable, the model is termed \hidden." This model was

introduced by Baum [8] and popularized for speech recognition by work at IBM [49] and

ATT [57].

23

: : :

S s ; s ; : : : ; s

s s a

a q s q s

q t

Q q ; q ; : : : q s t

t s

q s

f g

j

f g

j

we shall regard all that is presented in this volume, and all that shall follow, as
merely a set of conceptual and mathematical tricks, a bit of scienti�c legerdemain,
which, for reasons unknown, but for which we are profoundly grateful, prove to be

startlingly more successful in many applications than anyone who examines the
basic assumptions would have any right to expect.

Richard Bellman,

o

o

Hidden Markov Models

Chapter 3

o
t

… …

a
i,i

a
i,i+1

i−1 i i+1

t
o

t to
t t

s s s

Pr(| q = s) Pr(| q = s)Pr(| q = s)i−1 i i+1

t i

i t t t i

� �

Figure 3.1: Hidden Markov model.

A HMM is characterized by the initial state probability distribution , the state-to-

state transition matrix , and the observation-output probability matrix . The matrix

accounts for the probability that the observation was emitted by state at time ,

denoted as

() = Pr(=) (3.2)

HMMs are perhaps the most successful speech-recognition approach to date, and there

exist well-developed algorithmic methods for solving the following fundamental problems

(once a model topology has been determined and training data obtained). These

are:

1. Training: given a known sequence of observations (training data) , adjust the HMM

model parameters () to maximize Pr().

2. Recognition: given a sequence of observations and a trained model , �nd the most

\optimal" state sequence . Typically this is the sequence that maximizes the

joint likelihood Pr().

24

�

A B B

s t

b q s

� ;A;B �

�

Q Q

;Q �

j

j

j

a priori

o

o o

O

O

O

O

�

�

1 2 1 2T T

t

i

� � � �

�

�

�

The basic problem in HMM speech recognition is to �nd the most probable state path

= , given a sequence of observations = and a

particular hidden Markov model . Thus maximizes in some sense the joint probability

Pr(). Assuming a �xed HMM , this may be written

Pr() = Pr() Pr() (3.3)

which rather neatly separates the recognition problem into two tasks: the acoustic modeling

problem (�nding Pr()), and the language modeling problem of �nding the most likely

state sequence Pr(). Language modeling is a di�cult problem in its own right,

and will not be considered here. Typically, individual hidden Markov models are sub-phone

events, phones, or entire words; each model has a number of distinct states. The most

probable state sequence identi�es the most probable model sequence, which then may

be considered the recognized string. For the experiments presented in Chapter 5, all (word)

models will be considered equally likely, thus �nding need only involve maximizing over

Pr().

Before any training or recognition can be done, a method must be found of determin-

ing the probability that an acoustic observation (event) was emitted by a particular

state . The observations are vectors from an underlying feature space that is gener-

ally continuous and high dimensional. (Typical feature spaces contain linear or mel-scaled

cepstral coe�cients, frame energy, LPC residual, and time di�erences thereof [53].) The

output-probability model consists of a set of probability density functions (pdfs) on the

feature space, one for each state in the model. Thus, the set of output probabilities maps

the observation feature space to a set of state-conditional probabilities, each of which

25

Q q ; q ; : : : ; q T ; ; : : : ;

� Q

;Q � �

;Q Q Q

Q

Q

Q

Q

Q ;�

s

B S

N

f g f g

j

j

j

j

a priori

O o o o

O

O O

O

O

o

O

10

re
ects the probability distribution of observations emitted by a particular HMM state.

Finding a good model for is critical to the performance of of the speech recognition

system [20]. In practice, these pdfs can only be estimated from a limited set of training

vectors, so a good model must be
exible enough to match the actual distributions yet

constrained enough to generalize well to data not seen in training. In low-dimensional

cases, an unknown pdf may be determined from the available data by a variety of methods.

If the pdfs are of a known parametric form|e.g. a mixture of normal distributions|then

the task is reduced to a well-known parameter estimation problem [31]. If no assumptions

are made about the form of the distributions, there exist nonparametric pdf estimators such

as K-nearest-neighbor and kernel estimators that may be used [31].

Feature sets used in speech recognition are high-dimensional, and therefore discrete or

nonparametric pdf estimates can be extremely crude even for a reasonably large number of

data points. As an example, consider a relatively modest 10-dimensional feature space. If

each dimension is quantized even as roughly as, say, 10 equiprobable bins, it will take at

least 10 data points just to insure that every bin might have one point in it. Reasonable

recognition performance depends on circumventing this \curse of dimensionality" [10], and

�nding a way to obtain good pdf estimates from a �nite amount of training data.

In practice, output-probability models are conveniently divided into discrete and continuous

avors. Discrete models �rst map the feature space into a �nite set of symbols or labels; each

HMM state then has an associated stochastic vector of label output probabilities. Typically,

feature vectors are mapped into the labels by �nding the nearest vector from a �xed set of

reference vectors. This mapping from a continuous space to a �nite, discrete set is termed

26

B

R

3.1 Discrete models

1

2

Figure 3.2: Vector Quantization.

\vector quantization," abbreviated VQ [59, 70], and is shown schematically in Figure 3.2.

The data points (symbolized by + and) fall into two major clusters, the centroids of

which serve as reference vectors (symbolized by the labeled arrows). Any data point falling

in the polygon surrounding a reference vector is assumed to belong to that cluster and

is labeled with the corresponding reference vector code. This scheme is computationally

attractive, and is widely used for speech coding as well as recognition. Unfortunately, this

often results an comparatively poor acoustic model, for the following reasons.

Vector quantization partitions the high-dimensional feature space into a comparatively

small number of regions. All observation vectors falling into the same region are

lumped together, and any discriminatory information between them is lost. Because

the number of regions is relatively few and the dimensionality is high, the discretization

of the feature space is necessarily crude.

27

4

�

D

The discrete regions in feature space have �xed boundaries and are not robust to either

bias or noise. Slight changes in the actual distribution caused by talker variation,

recording environment, or noise can result in completely di�erent reference vector

selection, with disastrous consequences for recognition performance.

Reference vectors, and hence the label regions, are typically found using an unsu-

pervised algorithm such as -means clustering [59, 31]. Such regions correspond to

clusters in the overall data space and not necessarily to meaningful acoustic events.

The very concept of \distance" is problematical, as a distance measure implies some

constraint on the form of the distribution|for example, in -means clustering, vectors

that are \distant" in a Euclidian or Mahalonobis sense are considered \di�erent" even

though they may be semantically identical. Ideally, features should be quantized to

minimize rather than some distortion metric [64].

In an attempt to overcome some of these drawbacks, probabilities may be estimated on

the -dimensional observation space rather than a discrete mapping thereof. This

is typically done by training a set of multidimensional Gaussian functionals to �t the

observed feature data, illustrated schematically in Figure 3.3. (In the �gure, the symbols

+ and represent data points as before, while the ellipses represent contours of constant

probability for a single mixture term. Two mixture terms are depicted as modeling the two

clusters.) The desired state-conditional probability may then be calculated as a weighted

28

K

K

D

M

�

�

�

<

4

recognition error

3.2 Continuous models

1

2

=1

=1

j t

M

i

ij t ij ij

ij ij

ij

M

i

ij

Figure 3.3: Continuous Mixture Density.

sum of multivariate normal distributions (()):

() = () (3.4)

where and are the corresponding mixture mean and covariance [72, 9]. The mixture

coe�cient is the relative contribution of mixture to state . Mixture coe�cients are

subject to the normalization condition that

= 1 (3.5)

Because this continuous model normally results in better recognition performance, it

is generally agreed to be a better representation of the underlying probability space. A

common variation on this scheme is known as \tied mixtures" or a \semicontinuous" model:

29

b c ; ;

c i j

c :

N �

No o
X

X

� �

� �

=1

j t

M

i

i t i i

here a �xed set of Gaussians are shared by all states in the model [67, 40].

() = () (3.6)

This is advantageous because it reduces the number of parameters that must be estimated

from �nite training data.

A drawback of continuous models is that training the mixture parameters is computa-

tionally intensive, and subject to dynamic range problems [83]. As a parametric representa-

tion, many critical parameters (e.g. mixture size) must be determined , independent

of the observed data. Although a Gaussian distribution of speech data is plausible for no

other reason than the Central Limit Theorem, there is little evidence that a normal distri-

bution �ts the observed data, especially when covariance matrices are assumed diagonal,

as is usually the case. (See [12] for a gallery of scatter plots of cepstral and energy fea-

tures. Many distributions look distinctly un-Gaussian, at least when projected onto two

dimensions.)

An increasingly popular output-probability modeling technique is the use of Arti�cial Neural

Nets or ANNs. The huge variety in network types, philosophies, and training methods makes

a concise summary impossible; the interested reader is referred to the canonical review

article by Lippman [60]. Although substantial work has been done on purely network-based

speech recognition [19, 86], it is generally agreed that a neural network structure is not well-

suited to time-dependent data such as speech and therefore the most promising direction is

the integration of ANN-based probability models with HMMs. To this end, work has been

done using ANNs to estimate HMM state output probabilities, thus combining the best

30

M

b c ; ; :N

a priori

o o

3.2.1 Neural-Network-Based Probability Models

X
� �

j j i

j

aspects of ANNs (powerful function estimation) and HMMs (time-dependent modeling and

computational tractability) [15, 77, 78, 16].

The conventional discrete and continuous acoustic models already described assume a para-

metric form on the densities involved. If there is a mismatch between the model form and

the underlying densities, maximizing Pr() will not necessarily lead to better recog-

nition performance [20]. A discrete, non-parametric alternative to the above methods is

proposed here. In this method, the feature space is partitioned by a decision tree into

contiguous, non-overlapping regions called leaves (as discussed in Chapter 2). Associated

with each leaf is a set of probabilities (), that a state produced a vector landing in

leaf . These probabilities are used directly in the HMM recognition algorithm. Figure 3.4

shows schematically how the the tree-based model contrasts with continuous and VQ-based

discrete models.

The VQ probability model tessellates the feature space into a number of Voronoi

polygons (the locus of points closer to the associated reference vector than any other

vector). Reference vectors are commonly found using unsupervised methods and are

independent of class distributions.

Continuous models such as mixture density estimates �t Gaussian or other smooth

basis functions to the observed training data.

Tree-based models partition the feature space into boxlike leaf cells. Though obvi-

ously not as
exible as Voronoi polygons, it is practical to use two or three orders of

magnitude more leaves than polygons (reference vectors) and hence the tree partition

31

Q ;�

l p i s

l

j

�

�

�

O

3.3 Tree-based Probability Models

Figure 3.4: Tree quantization.

can exceed the spatial resolution of a VQ tessellation.

This acoustic modeling strategy has a number of interesting advantages over conven-

tional approaches:

Trees handle high-dimensional spaces gracefully, essentially by ignoring dimensions

that don't aid the classi�cation task. This allows the use of high-dimensional feature

spaces that other methods may �nd problematic. For example, dynamic variation

may be modeled by concatenating time-adjacent input vectors, which has shown to

be an important way of circumventing the HMM independent-output assumption and

adding context-dependent information.

Because of the hierarchical nature, �nding a tree-based output probability given the

input vector is extremely fast. Classi�cation speed means practical values of on

the order of several thousand or tens of thousands, where is the number of discrete

32

L

L

�

�

regions in the feature space. Conventional VQ systems are limited to of a few

hundred by the costs of �nding the reference vectors. Thus tree-based modeling

allows high-resolution, non-parametric modeling of the underlying pdfs with the speed

advantages of a discrete model.

Trees can cope with categorical as well as continuous data, which permits the use of

novel acoustic features. In addition, the tree-determined class label of the previous

vector may be fed back into the tree as a feature, in a manner similar to a \recurrent

neural network."

Given a decision tree, new probability estimates may be found using Viterbi-labeled

data. Such probabilities may be derived in linear time, rather than the iterative

training required by parametric pdf estimators or arti�cial neural nets. This allows

a practical method of speaker adaptation by reestimating probabilities as new talker

data becomes available. This has potential both as a talker-adaptation method but

also for speaker-independent tasks by using a small number of reference talkers and

\adapting" between them.

Decision trees are non-parametric and make no assumption on the form of the actual

data distributions. Traditional VQ systems require the number of reference vectors,

and hence the resolution of the feature-space quantization, to be set . In a

tree-based systems, the resolution (and hence the number of free parameters in the

probability model) may be naturally adjusted by pruning the tree. This can be used

to determine the appropriate tree size for, and hence the number of parameters to be

estimated from, a given amount of training data.

33

L

�

�

�

a priori

Once the feature space has been discretized by the tree, the relative importance of

the individual feature dimensions may be discerned from the tree structure. This

allows discrimination between feature sets, to �nd the features that best represent the

underlying speech information.

The above discussion is not to suggest that tree-based models are a \magic bullet;" they

are not. Drawbacks of the tree method include the following:

The set of class boundaries is relatively inelegant: for the applications presented

later, boundaries are constrained to be hyperplanes and normal to feature axes. This

is less
exible than the Voronoi polygons in a nearest-neighbor VQ system, but can

be compensated for by increasing the tree size (roughly analogous to increasing the

quantization resolution). A complicated boundary may be �tted arbitrarily closely by

increasing the number of leaves.

A decision tree is still essentially a vector quantizer and su�ers from most of the

disadvantages of Section 3.1.

A decision tree model is non-parametric and has many more free parameters than

a parametric model of similar power, and will require consequently more storage.

Because these parameters must be estimated from training data, a large amount of

training data is required for good parameter estimates.

Chapter 2 discusses the construction and properties of decision trees, while Chapter

4 shows their use in the context of a HMM speech recognition. Experimental results are

presented in Chapter 5.

34

�

�

�

�

This chapter discusses how decision trees may be used to model the state-conditional

output probabilities in an HMM speech recognition system. This is a two-part process

consisting of tree construction, which may be done using the methods of Chapter 2, and

output probability estimation. Once the tree has been built, it is used essentially as a

vector quantizer, as depicted in Figure 4.1. The necessary output probabilities may then

be estimated using the methods of Section 4.3.

Before the tree can be constructed, the speech data must be labeled, that is, all observations

in the training set must be associated with some class label. (This is a necessary requirement

of all \supervised" classi�cation schemes such as Learning Vector Quantizers (LVQs), linear-

discriminant analysis, and ANNs, as well as trees.) For speech, the very concept of \class"

is not well de�ned, and depends to a large extent on the recognition task. For instance, in a

large-vocabulary system, the appropriate class labels might be phones or sub-phonetic units,

while for a small-vocabulary task they will be words or even phrases. Even given accepted

35

: : :

This Tree is not as we are told, a Tree
Of danger tasted, nor to evil unknown
Op'ning the way, but of Divine e�ect

To open Eyes

Milton

4.1 Labeling Speech Data

Tree-based Probability Models

Chapter 4

...

l j

...

... ...

ot

...

ot−1 t+1o
Input Vectors

Decision
 Tree

Leaf Lookup j

j t iPr(l , q = s)

1

1

t

Actually, the speech data is usually segmented automatically; human experts review the segmentation
and adjust it if necessary. [92]

Figure 4.1: Contextual input to decision tree.

de�nitions of words, coarticulation e�ects will tend to blur the boundaries between them, so

there may be no obviously \correct" segmentation. Labeling speech data is therefore a non-

trivial undertaking. While there exist speech databases that have been labeled by experts ,

a commonly-used procedure is called Viterbi labeling, where a HMM-based recognizer is

run on unlabeled data using a model constrained to the known word sequence.

Because of this constraint, much of the uncertainty (and hence error) is removed from the

recognition process. The most probable state path may then be determined, which gives a

maximum-likelihood alignment between model states and the speech signal. Because hand-

labeling speech is onerous and error-prone, Viterbi-labeling techniques are widely used in

practice [55, 62]. (Automatic labeling has the added advantage that even if is wrong, it is

more consistently wrong than data labeled by humans.)

Viterbi-labeling speech data results in a sequence of feature vectors that have been

labeled with the HMM states that most likely produced them. That is, each observation

36

a priori

o

i i

j

t i j

j j i

j

4

is assigned a corresponding state 1 2 , which serves as the class label of

Chapter 2. While in a word-based HMM system there is no guarantee that an HMM state

corresponds to a meaningful, or even stationary, segmentation, the technique works well in

practice and is widely used for supervised classi�er training [76, 7]. Given the labeled data

and the tree construction techniques of Chapter 2, it is straightforward to build a decision

tree using Viterbi-labeled speech data.

A tree contains a number of terminal leaves . The set of leaves partitions the

feature space into adjacent, non-overlapping regions, called or . Let ()

denote the probability that an observation emitted by state falls in leaf cell (where

indicates the particular state and the particular leaf):

() = Pr() (4.1)

A tree density model therefore consists of a set of probabilities (), which can be

considered as vectors of length , where is the number of states in the model and

is the number of leaves in the tree (=). The number of free parameters is thus

. The size of the tree may be chosen at will, allowing
exibility in the number of free

parameters. If training data is limited, a small tree may be preferable because larger trees

have too many free parameters to estimate reliably. Conversely, a large tree can yield a very

detailed pdf model if there exists su�cient data to train it properly. A tree-based HMM

model can then be denoted as = (), where takes the place of the matrix of

conventional models. Note that if a tree is used as a vector quantizer, a model trained with

37

s ; i ; ; : : : ; S c

L p i

s l

i j

p i l s :

P p i

S L S

L L

S L

� � ;A; P P B

2 f g

T L 2 T L

j

jLj

�

leaf cells cells

o

4.2 Tree Probability Models for Speech

�

1 2

+1 +2

i j

i

i i

i

i t t i

i i

i t t T t i

4

4

quantized observations will have probabilities identical to a tree-based model . The

di�erence is that in a conventional model, each stores probabilities while in the

tree-based model, each stores probabilities with the following relation:

() = () (4.2)

There are two general schemes for training a HMM model; the so-called \Viterbi training"

and the Baum-Welch algorithm. Both of these may be used to estimate the tree probability

model .

A popular and computationally practical method of estimating HMM parameters is the

Baum-Welch algorithm. This is sometimes called the \forward-backward" algorithm as it

consists of two phases: computing the \forward" and \backward" probabilities ()and

() respectively. The forward probability () is de�ned as the likelihood that an obser-

vation sequence up to time ended in state , given the model:

() = Pr(=) (4.3)

Similarly, the backward probability () is the probability that, starting in state , an

observation sequence runs from time to the end (time):

() = Pr(=) (4.4)

38

B P

b j p i :

P

� t

� t � t

t s

� t ; ; : : : ; ; q s ; � :

� t s

t T

� t ; ; : : : ; q s ; �

j

j

state leaf

leaf state

o o o

o o o

4.3.1 Baum-Welch Estimation of Tree PDFs

4.3 Estimating Tree PDFs

t j

1 2

=1

: ()=

=1

i

t

t t i T

i i

N
i i i

t

j j t i
t l t

T
t t

t t

t j

t t

j

T o

in the notation of [73].

The forward-backward algorithm uses an e�cient dynamic programming method to

calculate (4.3) and (4.4). Once calculated, the probability of being in state at time

given the model and observed data is denoted (), and may be found as follows:

() = Pr(=) (4.5)

=
() ()

() ()
(4.6)

Given () as above, the tree densities may be estimated exactly as the output proba-

bilities of a conventional HMM:

() = Pr(=) =
()

()
(4.7)

where () denotes the terminal leaf \reached" by the observation when classi�ed by

the tree . (Equivalently, () is the volume associated with leaf that contains vector

.) Equation 4.7 is just the expected value of () for the observations that happen to

fall into leaf . This result means that the tree densities can be iteratively re-estimated

with the other model parameters in the Baum-Welch training algorithm. It should be noted

that there is nothing novel in this approach; it is identical to Baum-Welch training for a

conventional discrete HMM where the tree is used as a vector quantizer.

Viterbi training, also called [49] uses an existing HMM system to Viterbi-

label a training utterance. This is done by constructing a special HMM constrained to follow

the known model sequence; only the correct word transitions are allowed. The

39

s t

 i

 i q s ; : : : ; ; �

� t � t

� t � t

 i P

B

p i l q s

 i

 i

l

 i

l P

j

j

T

T T

Viterbi extraction

a priori

o o o

o o

o

o

4.3.2 Viterbi Training

P

P
P

=1

t

i

ij

i

i j j i

j i
ij

j j i

j i

i

j i

L
l j i

j

Viterbi algorithm then �nds the maximum-likelihood alignment between the states and the

acoustic observations. Once the state sequence is known, transition and output probabilities

may be re-estimated by taking expectations exactly as in Baum-Welch training (section

4.3.1). Viterbi training is analogous to Baum-Welch training where the probabilities ()

of being in state at time are constrained to be one (for the best-path state at time

) or zero (for all other states). The re-estimated model parameters can be used to �nd a

new Viterbi alignment, and the process iterated; this is one form of the

, which has been shown to converge to a local maximum [51, 71].

Given Viterbi-aligned data and a classi�cation tree, it is straightforward to count ,

the number of data points from state (i.e. the number of observation vectors aligned with

state) that wind up in leaf . From this, the joint probability of the leaf and state

may be estimated by dividing by the total number of data points :

Pr() (4.8)

Any desired marginal or conditional probability can then be derived from the joint proba-

bility. For example, the conditional probability of the leaf node given the state is the joint

probability divided by the state marginal:

() = Pr() (4.9)

=
Pr()

Pr()
(4.10)

=
Pr()

Pr()
(4.11)

It is thus straightforward (not to mention quite rapid) to estimate the tree output proba-

bilities (). The training data can then be relabeled using the new tree model, and the

40

 i

s t

t

K

S

s

s l l s

N

l ; s
S

N
:

p i l s

l ; s

s

l ; s

l ; s

p i

�

j

segmental -means

algorithm

P

1

1

n

n n

n n

�

�

probabilities re-estimated. As before, this is completely analogous to Viterbi training a

discrete HMM model where the tree is used as a vector quantizer.

It is reasonably certain that the independent-output assumption is inaccurate for the speech

signal, i.e., the observation likelihoods are not conditionally independent of time-adjacent

observations. This assumption is made primarily for convenience; more complicated depen-

dence models can be constructed at the cost of increased computation and storage require-

ments, and a substantial increase in training complexity [88]. Typically, the independent-

output assumption is kept, and secondary features are added that indicate the time rate-

of-change of primary features [90, 53]. These invariably improve recognition performance,

albeit by increasing the feature space dimensionality.

One way of naturally adding contextual information is to concatenate time-adjacent

vectors, yielding a higher-dimension feature space [20]. (This approach is also used in

many ANN-based acoustic models [86, 16, 3].) For example, two adjacent -vectors may

be concatenated to form a single vector with 2 elements. This explicitly introduces time

dependence into the feature space. Consider, for example, a one-dimensional discrete-time

random process having value at time . Imagine the two-dimensional space formed

by time-adjacent values, i.e. plot versus . This is linearly separable into a positive-

slope region and a negative-slope region by the line = . More complicated time

dependencies can be modeled with more complicated boundaries. The drawback of vector

concatenation is that the feature space dimensionality can get large enough to easily over-

whelm conventional classi�ers, even after dimensionality reduction by principal-component

or linear-discriminant analysis [68, 20].

41

n

n

X x n

x x

x x

4.4 Context Modeling

...

l j

...

...

Input Vectors

Decision
 Tree

Leaf Lookup j

ot Delay

 Most probable
class i from leaf j

j t iPr(l , q = s)

Figure 4.2: A time-recurrent decision tree.

Decision trees, on the other hand, can gracefully handle high-dimensional feature spaces

and allow context modeling in a very natural way. Because of the supervised manner of

tree construction, dimensions that do not yield information about the class domain are

simply ignored, in contrast to other methods, where these dimensions must be explicitly

considered. For example, in a mixture-based acoustic model the mean and covariance must

be estimated for every dimension regardless of its importance in the classi�cation task. Even

in a computationally less intensive discrete system, a new input vector must be compared

with a set of reference vectors using a distortion measure that must be computed on the

entire dimensionality of the space.

Because trees easily handle discrete (categorical) features, a straightforward extension to a

tree-based quantizer is to add the classi�cation result of the previous vector to the feature

42

4.4.1 Time-Recurrent Trees

space. The idea, similar to the use of \recurrence" in ANN-based acoustic models [78,

14, 16], is depicted in Figure 4.2. Here the most probable class of the last input vector is

used, together with the current vector, as input to the decision tree. This can model time

dependence without the large dimensionality increase of context concatenation. (The fact

that feature values are continuous and the class label is discrete is of no consequence to the

decision tree but could not be modeled with, say, a nearest-neighbor vector quantizer.)

While the actual leaf number itself could be used, analogous to the reference vector label

in a VQ system, this makes tree construction problematical because the tree structure would

need to be known before it was determined. In work done at Speech Systems Incorporated, a

similar strategy was described that used a two-stage tree|the �rst stage selected leaf nodes

based on the input vector or window, while the second stage selected leaf nodes based on a

context window of �rst-stage outputs [2, 1].

An unexplored use of decision-tree acoustic models might be feature sets having categor-

ical components, e.g. the binary output of a voiced/unvoiced speech detector (as suggested

in [64]). Such features might be quite useful in discriminating stop consonants, yet would

be awkward (if not impossible) to add to conventional classi�ers.

Acoustic models must necessarily be trained from a �nite amount of data. In general,

performance improves with additional training data, because it allows better estimates of

the underlying probability space. To quote R. Mercer of IBM, \There's no data like mo'

data" [6].

Every probability model has a large number of parameters which must be estimated

from the training data. \Undertraining" refers to the situation where there is insu�cient

43

4.5 Rocks and Hard Places: Undertraining and Over�tting

data to get robust estimates of the parameters. Probabilities will be \noisy" and the

resultant model will perform poorly. On the other end of the spectrum is over�tting, where

models essentially memorize the training data and are unable to generalize to new data|

classi�cation performance on training data will be excellent but will su�er on novel data.

(Over�tting is often called \overtraining"; this is perhaps an unfortunate term because a

good model will handle large amounts of data gracefully).

Nonparametric models are especially sensitive to over�tting, because they are so data-

dependent. In the case of decision trees, over�tting is caused by trying to grow too large

a tree from a given amount of data. Many leaves will have been grown just to �t clus-

ters or con�gurations that occurred only by chance and that do not really represent the

distribution from which the data was drawn. Because tree-based acoustic models can be

grown arbitrarily large, it is important to determine when the trees are optimally sized. A

mass-weighted split criterion automatically guards against over�tting because nodes with

insu�cient data will not be split. Perhaps the most widely-used method is to prune large

trees according to classi�cation results on an independent or cross-validation data set [18].

This is the approach used in the experiments section 5.6: the performance of the system on

novel data is judged against di�erent tree sizes.

It is not surprising that decision trees have found widespread use in speech. Besides language

modeling, investigators at IBM have been using decision trees to generate spelling-to-sound

rules [5], and to model phonetic context. In a large-vocabulary speech recognition sys-

tem, word models must be built from phone or sub-phone units, however, there is usually

a number of di�erent phone sequences that model a given word because of articulation or

44

4.6 Decision Trees for Speech Recognition

2

2

Such a collection of trees is called a \wood."

pronunciation di�erences (for example, \butter" is usually pronounced \budder," but \buT-

Ter" is also correct and must be considered). This allophonic variation has been modeled

at IBM by building a tree for each phone . The trees are constructed by looking at the

phonetic context of a large amount of training data; the leaves of the tree correspond to

probable allophonic sequences and are used to construct an appropriate word model [6].

Interesting recent work at IBM applies similar phonetic context trees to the vector

quantization stage [7]. Reasoning that the phonetic context in
uences the distribution of

feature vectors, context-dependent trees are built for each class (phone). At the leaf of each

tree, a diagonal-covariance Gaussian distribution models the observed vectors in that leaf.

At recognition time, the models are evaluated across all leaves of all trees and the most

probable tree model (class) is chosen as the VQ output. (Since there are over two hundred

trees, each presumably having a large number of leaves, the e�ciency of this method will

be left for the reader to judge.)

A related use has been a hierarchical method for phoneme recognition. It is simpler to

decide in which of two broad phonetic classes a given segment of speech belongs, rather

than the precise phoneme. Such decisions can be made recursively until the classes consist

of individual phonemes, in which case the speech segment has been classi�ed. The resultant

classi�er is essentially a decision tree. An interesting twist on this approach uses neural nets

to make the split decision at each node; this has been used for both phoneme classi�cation

[74] and Swedish vowel recognition [84].

Wightman and Ostendorf [89] have used decision trees to classify intonational features

in speech. This is an excellent example of a decision tree's ability to handle both categorical

data (e.g. syllable stress/unstress and �nal/not-�nal) as well as continuous features (pause

45

time and mean pitch frequency).

Practically all current speech recognition systems use some contextual modeling to circum-

vent the HMM independent output assumption [68, 80, 53]. Perhaps the most common

method is to add features based on the rate of change of primary features, which im-

plicitly include information from the nearby vectors used to compute the slope [90, 53].

Most network-based speech recognition systems model context more explicitly by using

time-adjacent vectors (see, for example, [3, 14, 77, 19]). The Time-delay Neural Network

(TDNN) approach introduced by Waibel et al. [86] not only uses 150 ms of context (15

adjacent frames) in the input layer, but also the context from a time-shifted hidden layer

to further increase the \memory."

The work presented here extends previous investigations of tree-based quantizers done at

Speech Systems Incorporated (SSI) and by Ostendorf and Rohlicek [64].

Work done at SSI [2, 1] has used trees grown with the same MMI-based split crite-

rion, though partitions were found through a gradient-descent search to �nd the optimal

hyperplane split, rather than an exhaustive search of one-dimensional splits as done here.

The input data considered a context window of three input vectors; acoustic features were

identical to the system features: 12 cepstral and di�erenced-cepstral coe�cients

and energy/di�erenced energy at a 10 ms frame rate [53]. Once the basic tree was been

constructed, a secondary tree was built to perform \segment" encoding. Time-contiguous

runs of frames with the same leaf code (from the primary tree) were merged; a sliding win-

46

SPHYNX

Context Modeling

Tree-based Quantizers

dow of this data, along with acoustic vectors, a rough phonetic classi�cation, and duration

information, is used to train the secondary tree to further segment the acoustic data. The

segment-coded frames were then used as input to a simpli�ed version of the HMM

recognition system. Using the two-stage tree encoder resulted in a 33% error reduction and

a net speedup of 1.6 over the VQ-based system. (The performance of a one-stage

tree is not indicated; presumably the two-stage tree is necessary.) Problems were found

using mutiple codebooks, and ultimately the performance was not found to be better than

the continuous system [54].

Ostendorf and Rolicek discuss using the MMI criterion both for building decision trees

and optimally reducing a set of VQ reference vectors. Their work using decision trees

as a VQ did not perform better than a conventional VQ. This is probably because the

trees used were relatively small (ca. 200 leaves), and did not take advantage of any more

contextual information beyond frame di�erences. As discussed in Section 3.3, trees need to

be large for a suitably detailed probability model, and the results presented in Chapter 5.6

show that adding contextual information improves performance substantially. They present

interesting use of the MMI metric by using -means clustering to �nd a large number of

reference vectors, which they then \pruned" to a smaller subset by using an MMI metric.

Thus reference vectors which did not enhance the classi�cation capabilities were clustered

with neighbors. This is a sensible and e�ective way to determine the proper number of

reference vectors in a VQ system.

No discussion would be complete without an analysis of computational cost. For a discrete

HMM, whether based on trees or nearest-neighbor VQ, this may be subdivided into the cost

47

K

SPHYNX

SPHYNX

SPHYNX

4.7 Analysis of Complexity

2

2 2

j

j j

of training the classi�er and the actual cost of classi�cation. Because the classi�er is trained

\o�ine," it is less important that it not be burdensome. Classi�cation, on the other hand,

must be done in real time for a real-time recognizer, and so must not be overwhelming. The

results of this section are summarized in Table 4.2.

Given training vectors from a -dimensional space, the complexity of the tree-growing

algorithm may be analyzed as follows. (Cost parameters are conveniently summarized in

4.1, along with typical values.) For a given cell, a number of splits must be considered for

every dimension. Constraining the partition to a single dimension, the number of possible

splits is bounded above by one less than the number of points in the cell, because the cell

could be split between any two data points with distinct projections on the split dimension

(i.e. not sitting atop one another) [24]. This is typically an impractically large number of

splits; in practice it serves to consider only a �xed number of split points, especially

because the MI split criterion is reasonably smooth. Splits must also be calculated for all

dimensions. Every possible threshold needs scalar compare/count operations, where

is the number of data points inside the given cell volume. Thus each cell needs

operations. The cells at a �xed level of the tree completely partition the feature space,

hence every level will need operations for all the cells at that level. If the tree has

leaves, it will have approximately log levels, and thus the total computational load is of

order log operations. For the systems discussed here, log is on the order of 10,

varies from 12 to 36, is 40, and is on the order of 200,000.

Reference vectors are typically determined by -means clustering [59, 12]. This iterative

procedure is time-intensive because at every data point must be compared with every refer-

48

N D

K

D N

N N KD

NKD L

L

NKD L L

D K N

K

4.7.1 Classi�er Training Cost

Utterance Length 1000
Feature Dimension 26
Reference Vectors 256
Codebooks 3{5
Leaves in Tree 1024
Training Vectors 200,000
Model States 244
Mixtures 256

Table 4.1: Summary of cost parameters.

ence vector to �nd the distance. Given reference vectors, every iteration of the -means

algorithm requires distance measures for every one of data points to �nd the closest

reference. In {dimensional space a distance measure will take computation proportional

to for any useful metric. Thus an iteration of the means algorithm requires order

computations; the total load is then over I iterations. For the system,

typical numbers are = 256, = 12 and = 200 000 as above.

For these numbers, the computational cost of tree-building and reference vector gener-

ation are roughly comparable. Because the number of reference vectors in a VQ system

is analogous to the number of leaves in a tree quantizer, the advantage of the tree system

is that computation grows with the logarithm of the number of regions rather than lin-

early. The computational advantage of trees becomes apparent when the number of leaves

is substantially increased.

It should also be mentioned that both these methods require large amounts of training

data, so memory access is perhaps as important a factor as computational speed. The

KNN algorithm can access training data sequentially, so it may run faster (especially on an

interleaved-memory machine) than a comparable tree generation program which accesses

training data in an unpredictable manner.

49

T

D

R

C

L

N

S

M

R K

R N

D

D K

NRD INRD

R D N ;

R

L

Parameter Symbol Typical value

lems

Tree construction and reference vector generation are done o�ine, and do not directly

factor into the recognition or training speed. The actual classi�cation cost is perhaps more

important for real-time applications. A naive implementation of a minimum-distortion

VQ system must compute a -dimensional distance metric for each one of reference

vectors, for a cost of . There are ways of orchestrating the search in a hierarchical

manner (essentially a tree) to reduce the number of necessary comparisons to log , but

this doesn't reduce the cost of a comparison and may result in suboptimal performance

because the minimum-distance reference vector is not always selected [75, 12]. Note that

tree classi�cation requires no multiplications (just comparisons), where a VQ classi�er must

compute a -dimensional distortion metric. Probability estimation in both cases is a simple

table lookup, once the vector has been classi�ed.

For a continuous model, classi�cation is replaced by probability estimation, which is

more expensive. For each vector, the probability must be estimated for each state for

both recognition and training. This requires the evaluation of {dimensional Gaussian

functions, and weighting their contribution by the mixture coe�cients. Even assuming

a diagonal covariance, this is not cheap. A further hindrance is that this computation must

be done at run-time for a near-real-time recognizer. The precise computational penalty

depends very much on the exact implementation and hardware [83].

The storage requirements for a discrete HMM Models are dominated by the output prob-

abilities. A discrete HMM needs storage for probabilities, where is the number of

states in the model, the number of reference vectors, and the number of codebooks. A

50

D R

RD

R

D

M D

M

SCR S

R C

4.7.2 Classi�cation Cost

4.7.3 Model Storage Requirements

Training (log) ()
Classi�cation (log) (log) |
Storage () (1 + +)

Table 4.2: Comparative costs of probability models.

tree-based acoustic model similarly needs to store parameters. Because a tree-based

model requires more leaves and codebooks for improved performance, it has more free pa-

rameters and consequently requires more storage. For the experiments presented in Chapter

5, = 5 and = 1024, versus = 3 and = 256 for the baseline discrete HMM system.

Thus improved acoustic modeling comes with a cost of an order-of-magnitude more storage.

For continuous models, it will su�ce to consider only the tied-mixture models which are

currently in vogue. Assuming no codebooks are used to reduce the dimensionality, a tied-

mixture model of the form of Equation 3.4 has mixtures, which requires the storage of

means, and (1) 2 covariance parameters, and mixture coe�cients. Typically

covariances are assumed diagonal, so only covariance parameters are required. The

total storage requirements are then (1 + +), or about 70,000 parameters. (This will

increase roughly linearly with the number of codebooks.) Not surprisingly, a parametric

model results in a much more compact representation.

51

NKD L INRD

L D R

SCR SCL M D S

SCL

C L C R

M M

M D D = SM

MD

M S D

O O
O O
O

� �

Operation Tree VQ Mixture

This chapter presents some experimental results of using a tree-based probability model

in the connected-alphadigit HMM speech recognition system [37].

Over the past several years, a talker-independent connected-alphadigit speech recognition

system has been under development at the Laboratory for Engineering Man/Machine Sys-

tems at Brown University. While system details are well-documented elsewhere ([37, 33,

38, 34]), a brief overview is presented here.

The recognition system is designed for talker-independent, connected-speech al-

phadigit recognition. The recognition vocabulary consists of the alphabet (\ " through

\ "), the digits (\ " through \ "), two control words (\ " and \ "), and

Utterance Pronunciation

Verne Hoover. v-e-r-n-e-space-h-o-o-v-e-r-period
126370 exhibit 1-2-6-3-7-0-space-e-x-h-i-b-i-t
Suez. 6047088 s-u-e-z-period-space-6-0-4-7-0-8-8
3sh1ph1 coequal 3-s-h-1-p-h-1-space-c-o-e-q-u-a-l

Table 5.1: Typical utterances (after Hochberg [37]).

52

: : :

A

Z zero nine space period

Because function
Function is the key.

Fugazi

5.1 The Speech Recognition System

Experimental Results

lems

lems

Chapter 5

lems

Data Set Talkers Men Women Utterances Time (min)

20 12 8 321 26.7
10 5 5 145 11.3

96 64 32 4398 369.5
64 0 2912 245.6
0 32 1486 123.9

Total 116 76 40 4719 396.2

Table 5.2: The Speech Database.

initial and �nal silences. Utterances consist of random digit sequences, random alphadigit

sequences, and letters from dictionary words; a typical set of utterances is displayed in

Table 5.1.

Speech is sampled at 48 kHz by a Sony PCM-2500 R-DAT recorder. It is then down-

sampled to 16 kHz and transmitted to a Sun workstation via a custom-built interface [33].

On the workstation, the speech data is segmented into 40 ms frames, Hamming-windowed,

and processed into feature vectors. Each feature vector consists of 12 LPC derived cepstral

coe�cients, 12 delta-cepstral coe�cients, normalized frame energy, and delta frame energy.

Overlapping each frame by 30 ms results in a 10 ms feature vector rate. For the \baseline"

discrete processing, each feature vector is then quantized by �nding the nearest reference

vector from a \codebook" of reference vectors. Three codebooks are used, for subsets of

the feature space consisting of the cepstra, delta cepstra, and energy/delta energy features.

For each codebook, 256 reference vectors were determined using a -nearest-neighbor al-

gorithm with a Mahalanobis distortion metric [12]. Thus each feature vector is labeled

with codewords from each of the three codebooks, which are assumed independent. The

quantized speech data is used to both train and test the HMM-based recognition system,

described in Section 5.1.1.

HMM parameters are estimated from a training corpus of speech data. At ,

116 talkers of American English each contributed about 3 minutes of speech, for a total of

53

K

test
(small)

train
(male)

(female)

lems

lems

1

1

Disclaimer: it was not the intention of the database designers to discriminate against women. The fact
that women are represented in more than token numbers is due to yeoperson e�orts made by the
database recruiters.

about 6.5 hours of data. This was arbitrarily divided into a 20 talker set and a 96

talker set. A \ " subset of data from 10 arbitrary talkers in the set was

used to expedite testing of di�erent tree and model con�gurations. Recognizer performance

analysis was done solely on the and data sets, which are completely independent

from data in the set used for model training. For the gender-dependent models of

Section 5.7, the set was subdivided into the and subsets, consisting

respectively of data from all the male and female talkers in the set . Table 5.2

summarizes information about the data sets.

A drawback of conventional HMM systems is that the duration distribution in a given

state is constrained to be exponential. It has been shown [39] that the exponential dis-

tribution is not a good model for the duration of many acoustic events which the HMM

states are assumed to represent. Di�erent duration distributions can be obtained by re-

placing the Markov chain with a semi-Markov chain and explicitly including duration in

the HMM model. This representation|referred to as the continuously variable duration

HMM (CVDHMM)|is described by Levinson et al. in [56] and its proponents have shown

improved performance over traditional systems [61, 35, 36]. Though some �nd the compu-

tational cost of explicit duration modeling to be prohibitive, it has been used to good e�ect

in the speech recognition system.

The recognized string is aligned with the correct string using a dynamic programming

procedure [82]. Recognition error is de�ned as the ratio of inserted, deleted, and substituted

54

test

train small test

test small

train

train male female

train

lems

lems

Speech
Input

Recognized
 String

 Signal
Processing VQ Viterbi

Algorithm

Codebooks Hidden
Markov
Models Speech

Database
 Codebook
Generation Model

Training Signal
Processing
 and VQ

Feature
Vectors

Figure 5.1: Speech recognition system block diagram.

words to the number of actual words in the utterance:

Error =
Substitutions + Deletions + Insertions

Words
100% (5.1)

A \baseline" discrete HMM system was used both for a performance reference and to

Viterbi-align data for tree construction and training, As previously mentioned, the system

uses 3 codebooks of 256 reference vectors each, corresponding to the cepstral features,

delta cepstral features, and energy/delta energy. State duration was modeled with an

explicit Poisson distribution, and the models were trained on the data set. Though

a word-bigram language model is easily incorporated into the HMM structure, resulting

in substantial performance gains, it was not used here: all word transitions are considered

equally likely (a full-perplexity grammar). Under these conditions, the system achieved

84.3% performance on the set and 83.92% performance on the test set. (The

di�erence is due to talker variation.)

55

:�

5.1.1 The baseline HMM system

train

test small

Speech
Input

Recognized
 String

 Signal
Processing

 Viterbi
Algorithm

Hidden
Markov
Models Speech

Database

 Model
Training

Feature
Vectors

 Tree
Generation Signal

Processing

Trees

Figure 5.2: Tree-based HMM recognition system.

The baseline connected alphadigit speech recognition system is shown schematically

in Figure 5.1. Symbols below the dotted line represent \o�-line" training programs and

database �les that support the real-time recognition procedure, shown above the line. In

a tree-based HMM system, trees take the place of both the vector quantization procedure

and the HMM output probabilities. Because quantization is so rapid, it may be integrated

into the training/recognition procedures as described in Section 4.2. Alternatively, the tree

may be used as a stand-alone vector quantizer. Because the the quantized feature symbols

must then be stored, this is a computation/storage tradeo�. For the experiments of this

chapter, probabilities were integrated into the tree structure with little penalty because of

the classi�cation speed of the tree.

A cepstral-domain representation of the speech signal is almost universally used for speech

recognition. A generally recognized advantage of cepstral features is the individual dimen-

56

5.2.1 Codebooks and Independence

5.2 Tree-based probability models

lems

sions are relatively uncorrelated. This is principally because the Fourier basis is orthogonal,

though it has also been suggested that the Fourier basis is a good approximation of the

Karhunen-Lo�eve expansion of spectral data (the expansion along principal-component axes)

[79].

True dimensional independence is an especially useful property, because it greatly sim-

pli�es probability estimation. In a mixture-density system, the (full) covariance matrix of

Equation 3.4 can be approximated by its main diagonal; assuming o�-diagonal elements are

zero saves considerable amounts of both computation and storage.

In a discrete system, the \curse of dimensionality" may be somewhat mitigated by

using multiple feature sets, or \codebooks." Reference vectors and their corresponding

probabilities are estimated for a lower-dimensional subspace of the feature space. Each

subspace has a corresponding set of reference vectors, referred to as a \codebook." Joint

probabilities on the high-dimensional feature space can be approximated by the product of

lower-dimensional codebook probabilities: this has the advantage of increasing the number

of e�ective quantization bins exponentially with the number of codebooks. (To see this,

consider a number of one-dimensional, two-label codebooks. The �rst codebook divides the

feature space into two regions; using the second gives four regions, corresponding to all 4

combinations of the two labels from each codebook. A third codebook yields 8 possible

combinations, and so forth.)

The baseline system uses separate codebooks for cepstra, di�erenced cepstra,

and energy/delta-energy. This is arguably the wrong approach because cepstral features

are probably more correlated with time rather than dimension, that is, a given cepstral

coe�cient is more likely to be correlated with its time-adjacent values than other cepstra

at the same time. The tree experiments of Section 5.6 investigate the use of context in

57

lems

2

2

Instead of assuming independence, Ostendorf and Rohlicek use the identity

(;) = (;) + (;) (;)

to construct trees from the multiple feature sets. Given an existing tree, a new tree may be constructed
such that splits which yield only redundant information are inhibited. Thus splits are considered only when
they add information not accounted for by splits in existing trees; this is said to make the tree outputs more
truly independent [64].

I X; Y C I X C I Y C I X Y�

the decision tree. As described in Section 4.4, this dramatically increases the feature space

dimensionality. At the extreme, nine adjacent 15-dimensional vectors are concatenated,

resulting in a feature space with 135 dimensions (!) In order not to get unduly sparse relative

frequency counts, the \codebook" approach is used to reduce the dimensionality. One vector

has twelve cepstral coe�cients and energy, delta energy, and LPC residual; this is divided

into 5 three-dimensional subspaces: cepstra 1{3, 4{6, 7{9, 10{12, and the energy/residual

features. Trees are then constructed for each of the �ve subspaces; adding the (reduced)

adjacent vectors increases the dimension to a maximum of 27, a much more manageable

number. As mentioned above, these spaces can be considered reasonably independent;

hence the probability estimate from a given observation may be computed by the product

of the probabilities from each of the �ve trees . Other feature space partitions are of course

possible: the number of codebooks, the size of the trees, and amount of training data all

probably interact to a�ect recognition performance.

A useful feature of a decision tree is that it can show each dimension's relative contribution

to the decision task. This is demonstrated on real speech data in this Section. A tree

was constructed using data from all talkers in the test set; the dimensional importance is

charted in Figure 5.3. As might be expected, the energy and low-order cepstral dimensions

contribute the most to the split criterion. It is interesting to note that the high-order

58

5.3 Analysis of Dimensional Importance

0.20

0.15

0.10

0.05

0.00
1 2 3 4 5 6 7 8 9 10 11 12

LP
C

 R
es.

E
nergy/ E

∆
F

ra
ct

io
n

of
 S

pl
it

In
fo

rm
at

io
n Feature

 Feature∆

Cepstral Coefficients

Figure 5.3: Split information of features.

di�erenced cepstra contribute little or nothing; this is perhaps due to the fact that high-

order cepstra encode high-\quefrency" spectral features rather than the gross spectral shape.

Thus high-order cepstra probably depend more on the vocal excitation rather than the vocal

tract con�guration, and therefore contain less information about the phonetic category of

the data.

Figure 5.3 shows clearly the energy, delta energy, and low and mid-order cepstra are the

most important features. These results agree reasonably well with those of Bocchieri and

Wilpon [13] and Paliwal [65], where dimensions were ranked using a ratio of in-class variance

to between-class variance. In Juang and Rabiner [52], performance recognition was improved

by \liftering" the cepstra|in e�ect, emphasizing the mid-order cepstral coe�cients at the

expense of high and low-order cepstral coe�cients. This con
icts with the results that

show the low-order cepstral coe�cients are quite important. This is perhaps because the

database was recorded on a single microphone while the experiments of Juang et

al. were done on telephone speech, presumably from di�erent handsets. Because the �rst-

59

lems

0.20

0.15

0.10

0.05

0.00
1 2 3 4 5 6 7 8 9 10 11 12

LP
C

 R
es.

Feature

 Feature∆

E
nergy/ E

∆
F

ra
ct

io
n

of
 S

pl
it

In
fo

rm
at

io
n

Cepstral Coefficients

Figure 5.4: Split information of features where cepstral coe�cients 4 and 5 have been
replaced with uncorrelated noise.

order cepstral coe�cient is a measure of spectral tilt, it will vary strongly with di�erent

microphones and recording environments, thus de-emphasizing it may tend to reduce the

environmental e�ects on recognition performance.

As a test, a tree was built with identical data save that cepstral coe�cients 4 and 5

were replaced with white Gaussian noise having similar means and variances. The resulting

dimensional importances are shown in Figure 5.4. As expected, the relative importance

of these features is negligible because the noise is completely uncorrelated with the seg-

mentation. (The importance is not identically zero because random correlations can occur,

especially in leaves with few data points.) This also shows an important lower bound on the

\importance" axis|features having this much importance (or less) are essentially useless

for the recognition task. A further test was to replace a feature dimension with \data" pro-

portional to the vector label. Not surprisingly, all splits were performed on this dimension.

It has been shown ([90]) that the addition of second-di�erenced cepstra to the feature set

can increase recognition performance. This, and the relative unimportance of the di�erenced

60

0.00

.035

.040

.030

.025

.020

.015

.010

.005

1 2 3 4 5 6 7 8 9 10 11 12

Delta−delta cepstra (1−6)

Delta cepstra (1−12)

Figure 5.5: Split information of double-di�erenced cepstral coe�cients.

61

high-order cepstra, suggested the following experiment: the six highest-order di�erenced

cepstra were replaced with the second di�erence of the low-order cepstra. Figure 5.5 shows

the relative importance of the low-order delta-delta cepstra with the importance of the

�rst-order single-di�erenced cepstra they replaced. The results showed that the second-

di�erenced features had three to four times the relative importance of the high-order delta

cepstra, but the absolute amount was still relatively small, and probably not enough to

signi�cantly enhance recognition performance.

Section 4.4 discusses the concatenation of adjacent feature vectors to explicitly model con-

text, at the cost of increasing the feature space dimensionality. The ability to extract infor-

mation from such high-dimensional spaces is a prime advantage of tree-based systems, and

it has shown to substantially improve the accuracy of the tree-based recognition system. It

is not necessary to concatenate strictly adjacent vectors; Figure 5.6 shows how vectors sepa-

rated by a \stride" of time ticks may be used to increase the context window|the length

of time considered|without increasing the dimensionality. The dimensional-importance

metric can be used to judge any feature dimension, including the dimensions added by

concatenating features. Figure 5.7 shows the dimensional importance of concatenating �ve

adjacent feature vectors. (This is found by summing the dimensional importance of each

dimension across adjacent vectors|a \dimension marginal.") The �ve graphs show the

e�ect of looking at 5 vectors an increasing distance apart, from adjacent (top graph) to

a stride of 5 frames, or 50 ms (bottom graph). In the system, feature vectors are

computed from 40 ms windows that overlap each other by 30 ms, or 75%. Thus each frame

contains much the same information as its neighbors. This is evident from Figure 5.7, which

62

r

5.4 Explicit Context Modeling

lems

...

l j

... ot ...

...

o o

stride

context

...

Decision
 Tree

Leaf Lookup j

j t iPr(l , q = s)

t−r t+r

Figure 5.6: Context and stride for tree input.

shows that for a small stride value, most of the contextual importance comes from the vec-

tors furthest away. This makes sense: vectors within one or two frames will be correlated

because they are generated from much the same data. The more distant vectors will have

more contextual information because they are less correlated. The \stride" variable was

introduced primarily to overcome the overlap problem; it was hoped that increasing the

stride value could incorporate information from reasonably time-distant vectors without

a large dimensionality increase. Unfortunately, increasing the stride did not appreciably

improve recognition performance.

In Providence, the the probability of rain on any day is, say, 20%. The probability that Pat

carries an umbrella is also near 20%. If the two events are assumed to be independent, the

joint probability of the two events is the product of the individual probabilities, or 4%. In

fact, the two events are probably well-correlated and the true joint probability (the chance

that it is both raining Pat carries an umbrella), is nearer 20%. Thus wrongly assuming

63

and

5.4.1 Run-Length Adjustment

-10 -5 0 5 10
0

0.1
0.2

-10 -5 0 5 10
0

0.1
0.2

-10 -5 0 5 10
0

0.1
0.2

-10 -5 0 5 10
0

0.1
0.2

Time (centiseconds)

-10 -5 0 5 10
0

0.1
0.2

Fr
ac

tio
n

of
 S

pl
it

In
fo

rm
at

io
n

stride = 1

stride = 2

stride = 3

stride = 4

stride = 5

Figure 5.7: Context dependency: split information vs. stride.

64

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Stride (centiseconds)

In
se

rt
io

n
E

rr
or

s

Figure 5.8: Insertion errors vs. stride.

independence can result in gross underestimates of true joint probabilities; the error gets

worse as the independence assumption is increasingly violated.

An indication that contextual information improves the acoustic model is shown in

Figure 5.8, which plots the number of insertion errors versus the stride value. It is a well-

known (but little-discussed) fact that the HMM output probabilities must be adjusted to

yield for the best recognition performance [20]. This is because the independent-output

assumption underestimates the true (joint) probabilities of long-duration events when they

are approximated by the product of independent outputs. Thus long-duration events such

as vowels are considered less probable than they actually are. The net e�ect is to force an

excessive number of insertion errors, as it becomes more probable to jump to a new word

or state than to dawdle in an (erroneously) improbable long-duration event. In the

system, this is �xed by exponentiating the word-to-word transition probabilities by a value

65

lems

greater than one. This is equivalent to Brown's \language model match factor," (LMMF)

where observation-dependent probabilities are exponentiated by a factor (the LMMF) less

than one [20]. The e�ect of the LMMF is to de-emphasize output probabilities in favor of

word transition probabilities and therefore reduce insertion errors. This process, called \run-

length adjustment," is used in many connected-speech recognition systems[53, 21]. The best

LMMF value is determined empirically, typically by �nding the value that roughly equalizes

insertion and deletion errors.

Experiments presented in [39] show that a better state duration model requires a LMMF

closer to one, (or equivalently, fewer insertion errors if the LMMF is unity). An acoustic

model that better captures the time-dependence of the features should therefore have fewer

insertion errors, given a LMMF of unity. This is exactly the result shown in Figure 5.8:

as the stride is increased the number of insertions decrease. Especially signi�cant is the

large decrease when the stride is increased from one to two. With a stride of one, a context

window of 5 means that the end vectors in the window will be well-correlated with the

central vector (because they are computed from overlapping frames). Increasing the stride

to two means that end vectors are separated by 40 ms and thus represent entirely novel

data.

The LMMF may also be used to mask a variety of other sins. For example, assuming

codebook independence will also cause output probabilities to be underestimated; this will

have an e�ect similar to the independent-output assumption, and may be similarly �xed

by adjusting the LMMF. The relative contributions of codebook and output dependence to

the required LMMF is not known and perhaps deserves further investigation.

66

10
-6

10
-5

10
-4

10
-3

10
-2

12

14

16

18

20

22

24

26

28

Output Probability Floor

R
ec

og
ni

tio
n

E
rr

or
 (

%
)

All training data

Reduced training data

j i

Figure 5.9: Recognition performance vs. probability
oor.

When training the leaf probabilities, some states will emit certain observations with low

enough probability to be e�ectively zero for a �nite set of training data. Consequently,

some probabilities Pr() will be estimated as zero. This is undesirable for the following

reasons:

1. Though certain observation emissions may not be seen in the training data, they may

still occur with some small yet non-zero probability. Setting the probability of these

occurrences to zero on the basis of the training data will cause problems when they

occur in novel data.

2. In many systems, probability computations are done in the logarithmic domain both

to simplify multiplication as well as to avoid under
ow. Zero probabilities are awkward

to represent in logarithmic form and are generally avoided [83].

67

l sj

5.5 Output Probability Smoothing

oor
oor

oor

oor
oor

oor

oor

oor

oor

oor

oor

oor

j

j

j j

j

Though this problem has more elegant solutions (such as \deleted interpolation"), a

convenient if crude method is to set vanishing or zero output probabilities to some small

yet non-zero \
oor." That is, values of () less than some are set to , and

renormalized if necessary.

() =
() ()

()

(5.2)

The e�ect of depends to a large extent on the amount of available training data. Figure

5.9 shows the e�ect of varying the
oor value for both a large amount of training data (all

data in the set) and a small amount (approximately 10 % of the set).

Essentially, is a guess about state emission probabilities not seen in the training

data. If is too small, then the probabilities of unseen events are underestimated,

and performance su�ers. Conversely, if is too large, then then the probabilities of

unseen events compete with high-probability events and performance again su�ers; this is

illustrated in the top curve of Figure 5.9. The best value of is determined heuristically

by �nding the value that maximizes recognition performance. Given su�cient training

data, probability estimates will be accurate: increasing can only hurt performance

by (wrongly) increasing the probability of unlikely events. The bottom curve of Figure 5.9

shows that performance does not deteriorate with decreasing ; this is good evidence

that there is su�cient training data to reliably estimate the tree probabilities.

Figure 5.10 shows the recognition performance versus tree size on the data set

of Table 5.2. First, training data was Viterbi-aligned using the baseline HMM system

68

p i p p

p i
p i ; p i > p

p ; p i p

p

p

p

p

p

p

p

�

5.6 Tree-based HMM recognition

8>>><
>>>:

train train

small

200 400 600 800 1000 1200 1400 1600
11

12

13

14

15

16

17

18

Tree Size (leaf nodes)

R
ec

og
ni

tio
n

E
rr

or
 (

%
)

c=7

c=9

c=5

c=3

Baseline

Figure 5.10: Recognition performance vs. tree size.

described in Section 5.1.1 (the performance of the baseline system is indicated by the dotted

line). Vectors were labeled with the most probable state from the 244 total states. (Each

word model was assigned from 4{12 states depending on the complexity of the word.)

Note that states may not correspond to any \meaningful" sub-word segmentation; also the

probabilities from many states may look quite similar, for example the later states of words

in the E-set. For this experiment, trees were built using 4 utterances from each talker in

the set, or approximately 10% of the training data. Trees were built using context

windows of 3, 5, 7, and 9 time-adjacent vectors; these correspond to the di�erent curves in

the �gure and are labeled with the width of the context window. Once constructed, the

trees are easily pruned to any desired size|in the experiment, trees were pruned to 256,

512, 1024, and 1448 leaves. Five codebooks were used, comprising cepstral coe�cients 1{3,

4{6, 7{9, 10{12, and energy/delta energy. (Delta cepstral features were not used because

69

train

the context should provide the equivalent information). Leaf probabilities were trained

from all data in the set, using relative frequency estimation (one iteration of the

Viterbi update, Equation 4.9). To produce the recognition results shown in the �gure, the

transition and (Poisson) duration probabilities were unchanged from the baseline model

and the output probabilities were obtained from the tree models. The results of Figure 5.10

show that including context substantially improves the recognition performance, reducing

the recognition error by as much as 20%. Again note the improvement as the context

window is increased from 3 to 5: this is the e�ect of including vectors generated from

novel (non-overlapped) data. Increasing the context window much beyond 7, however, did

not substantially improve recognition performance: beyond this distance, either signi�cant

contextual information was not captured by the tree model or else it is simply not there.

Also, increasing tree size beyond a certain level does not appreciably improve recognition

performance, even though the probability model is presumably more detailed.

The baseline performance is shown for reference only. The baseline system used only 256

reference vectors in three codebooks; given the 244 model states resulted in 3 256 244 =

187 392 parameters in the output probability model. For comparison, the �ve-codebook,

1024-leaf tree model has 1,249,280 parameters, nearly an order of magnitude more.

A large source of talker variation may be attributed to the pitch and vocal-tract di�erences

between men and women. This is an example of speech signal variability that is

of the information content: there is, of course, no substantial di�erence in the intelligibility

of men and women talkers under normal conditions. This variation will, however, a�ect the

performance of a recognition system, almost always adversely, because the natural variation

70

;

� �

independent

5.7 Gender-Dependent Modeling

train

Tree Built Tree Trained Men Women Best

all all 9.98% 17.70% 12.92%

all 9.68% 37.65%
all 35.00% 14.84%

11.64%

9.02% 42.86%
35.46% 17.67%

12.48%

Table 5.3: Recognition error of gender-dependent model experiments.

can be as large as or larger than the intrinsic di�erences in the various parts of speech. A

recognition strategy which can minimize the unimportant di�erences should perform better.

One way of accomplishing this is to use di�erent models to account for talker variation.

This approach has been used in a number of recognition systems, for example at SRI [63],

IBM [9] and in the system [53]. A simple but useful example is to construct

di�erent models for male and female talkers, by training each model on segregated data.

This has a number of bene�ts: gender is a large yet discrete source of variation, and it is

usually easy to separate talkers by gender.

As discussed in Chapter 4, constructing a tree-based probability model has two data-

dependent steps: building the tree and training the leaf probabilities. These two steps

may be done in a gender-dependent or -independent manner. The top line of table 5.3

shows the recognition error using a gender-independent model (this was a tree model using

a context window of 7, pruned to 1448 leaves, identical to the model used in Section 5.6).

The next two rows show the results of training the same tree on the and data

sets to form two gender-dependent models. The next two lines show the e�ect of actually

building trees with gender-dependent data. This did not result in improved recognition

accuracy, perhaps because less data was used to build the trees. These results show that

gender-dependent modeling improves recognition performance only slightly, and may not

be worth the trouble. The surprise here is not how well the talkers did on the same-gender

71

SPHYNX

male
female

male male
female female

male female

0 5 10 15 20

0

10

20

30

40

50

60

70

80

Talker

R
ec

og
ni

tio
n

E
rr

or
 (

%
)

Females --><-- Males

Figure 5.11: Individual talker performance on gender-dependent tree models. (Gray =
female-trained model; white = male-trained model. Stems () show classi�cation error
di�erence between female and male models [on an arbitrary scale].)

72

j�

j j

model, but how poorly talkers did on the incorrect model. These results also show that

the data used for leaf-probability training is much more important than the data used to

construct the actual tree. Not having to rebuild a tree is a de�nite advantage: Section 5.8

discusses making talker-dependent acoustic models by retraining the leaf probabilities of

talker-independent trees.

Figure 5.11 shows the performance of individual talkers with the talker-independent

tree trained with data (white) and data (gray). As might be expected,

male talkers did better on the male-trained model and (with one exception) females did

better on the female-trained model. (The exception shows that the di�erent models are

probably best considered vocal-tract-length dependent rather than gender-dependent. The

exceptional talker was scored using the male-model results for the performance calculations

of Table 5.3).

In the recognition task, the most appropriate model is unknown so some way

must be found of determining which model to use. A simple strategy is to run the recognition

procedure using all models, and choose the results from the model with the best Viterbi

score (the probability of the best state sequence). This has the drawback of increasing

recognition cost with the number of models. Alternatively, a \pre-classi�er" may be used

to make an educated guess about the most appropriate model to use for recognition.

Recall that the decision tree may be used as a classi�er by labeling each leaf with the

most likely class (HMM state) in that leaf. A decision tree may be used as a

by associating a class label �() with each leaf . For speech data, this may be done by

73

C l l

a priori

classi�er

5.7.1 Classi�cation Error vs. Recognition Performance

male female

0 10 20 30 40 50 60
80

82

84

86

88

90

92

Recognition Error (%)

C
la

ss
if

ic
at

io
n

E
rr

or
 (

%
)

=1

j
i

i j

i j

i j
j i

j

j i

N
i j i

Figure 5.12: Tree classi�cation error vs. recognition performance.

labeling each leaf with the most probable state (class) in that leaf.

�() = argmaxPr() (5.3)

The desired probabilities Pr() may be computed from the joint probabilities in the

fashion of Equation 4.9:

Pr() =
Pr()

Pr()
(5.4)

=
Pr()

Pr()
(5.5)

Figure 5.12 shows the classi�cation error versus recognition performance for 60 speech

�les from the talkers in the data set. While the classes are not su�ciently separa-

ble to make classi�cation particularly accurate (typically only 10 or 20 percent of vectors

74

C l s l :

s l

s l
l ; s

l

l ; s

l ; s

j

j

j

P

test

3

3

This shows why HMMs are essential: even the best classi�ers are useless without some way of modeling
the time variation.

are correctly classi�ed), there is a signi�cant correlation between classi�cation error and

recognition performance. As it turns out, the relative classi�cation error is a reasonable

criterion for selecting model \goodness" (the better the data �ts the model, the smaller the

classi�cation error).

This is shown by the stem plots in Figure 5.11; these chart the di�erence between

the female-model classi�cation rate and the male-model classi�cation rate (on an arbitrary

scale). A positive result means the female model classi�ed more vectors correctly, and thus

should be a better model. The di�erence is strongly correlated with relative recognition

performance: a negative result means superior performance on the male model and a positive

result means better performance on the female model, regardless of talker gender.

As shown in the previous section, leaf probabilities are much more important to the acoustic

model than the tree structure. Because leaf probabilities are so easily trained, a promising

application is talker adaptation. This is done by modifying the acoustic output probabilities

to re
ect a particular talker rather than the the training set ensemble, and can result in large

performance gains (at the cost of talker independence). In a practical system, the amount

of training information from a single talker will be small compared with the amount in

a talker-independent training database. Thus talker-dependent systems are vulnerable to

undertraining. The usual solution is to smooth the talker-dependent probabilities with ones

from a talker-independent model. With discrete-output hidden Markov models such as the

75

5.8 Talker Adaptation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Mixing Coefficient (alpha)

R
ec

og
ni

tio
n

E
rr

or
 (

%
)

250 s

750 s

adapt indep dep
j j j

Figure 5.13: Talker-dependent Recognition Performance.

tree-based ones of Section 4.2, this may be done using a linear\mixing coe�cient" :

() = (1) () + () (5.6)

where the adapted probability is a linear mixture of the talker independent probabilities

(derived from the large training database) and the talker dependent probabilities (derived

solely from the particular talker).

Figure 5.13 shows the results of a preliminary talker-adaptation experiment. The same

tree model used in the experiments of the previous section and Section 5.6 was trained on

the train set for the talker-independent model. (A female model was deliberately

used to show the adaptation to a male talker.) The training set for the talker-dependent

probabilities consisted of 140 utterances from one male talker: approximately 750 seconds,

or about 12.5 minutes of additional speech. The test set consisted of 45 utterances from

76

�

p i � p i �p i�

female

dep

oor

j

the same talker. The dashed line shows the e�ect of mixing between the talker-independent

female model and the talker-dependent model trained on 250 seconds of data. A mixture

coe�cient of zero means that the pure female model was used while a mixture coe�cient of

1 means that the purely talker-dependent model was used. Note that the mix does substan-

tially better than either model alone. Because the talker-dependent model is undertrained

(the unsmoothed () is zero for many and), and the talker-independent model is

inappropriate (for a male talker), the combination smooths the talker-dependent probabili-

ties by increasing the zero probabilities, resulting in better recognition performance. (This

is a much better smoothing method than the \
oor" of Section 5.9, because probabilities

unseen in the talker-dependent training data are estimated from the talker-independent

probabilities, which are almost certainly a better guess than some uniform .) The solid

curve shows the results of mixing the talker-independent probabilities with talker-dependent

probabilities trained on all 750 seconds of data. Even though the purely talker-dependent

model works quite well, there is still some advantage to be gained by smoothing with the

\inappropriate" talker-independent model|the error rate is reduced from 4.8% to 2.9%, a

reduction of 40%. (Note that the best talker-independent error is more than four times as

large.)

This method of talker adaptation should be quite practical, given the ease with which

new tree models may be trained. Because one iteration of Viterbi training is su�cient

to estimate the talker-dependent output probabilities, the talker-dependent model may be

constructed in about the time it would take to collect the talker-dependent training data.

Given the simplicity of the model mixing, an iterative method may be quite practical for \on-

the-
y" adaptation. Starting with an initially talker-independent model, as each utterance

from a new talker becomes available, the probabilities from the initial model are updated

77

p i j i

p

(0)

dep

(+1) () dep

j

j

n

j

n

j j

with the new estimates as follows:

0) Initialize probabilities () from talker-independent model.

1) Determine () from new utterance.

2) Update () = (1) () + ()

3) Repeat 1) and 2) as new utterances become available.

As reported in Section 5.6, tree-based probability modeling can signi�cantly enhance recog-

nition performance when contextual information is used. While it would be instructive to

compare the performance enhancement with results obtained by other researchers, it turns

out that very few groups are working on the connected-alphadigit task. Much work has

been done on the alphadigits; Paliwal [65] and Boccieri & Wilpon (reported in [65])

report recognition error rates on the order of 10%. Other work at AT&T [32] has resulted

in a 7% error rate on the same task using tied-mixture word-model HMMs. Cole and Fanty

[25] report a 4% error rate on the isolated alphabet task, using a hierarchical recognition

system that has been especially tuned to the task with knowledge-based features and neural

nets.

Besides English, Jouvet et al. [50] has reported a 15.7% error rate on the connected

French alphabet using continuous HMMs, while Bregler et al. [17] reports a 7.4% mean

error rate on a talker-dependent connected German alphabet task using Waibel's TDNN

architecture. (Neither the French or German alphabet are substantially more or less di�cult

than the English alphabet.)

78

p i

p i

p i � p i �p i�

isolated

5.9 Comparative Recognition Performance

Perhaps the best performance has been achieved by Hwang & Huang at CMU [41], who

report a 12.3% word error rate on the \continuous spelling task (26 English alphabet)"

with the baseline SPHYNX-II system. Though some details (such as scoring method) were

not described, this result was obtained using gender-dependent \semicontinuous" (tied-

mixture) HMMs where each word was represented by two models. The addition of \senonic

baseforms" (essentially tied output distributions) reduced the error rate to 9.6%, which is

perhaps the best published results on this task to date.

In contrast, the best recognition performance obtained here is an 11.64% error rate,

using the gender-dependent tree-based models of Section 5.7 on the alphadigit task, ob-

tained without substantial \tweaking" of any sort. Tuning codebook feature allocation

and weighting, the language-model match factor, and the output probability
oor would

probably result in modest performance gains.

The alphadigit task may be more di�cult than the alphabet because of the substantially

higher perplexity. While the digits are more \orthogonal" than the alphabet, they are still

a substantial source of confusion (typically, \8" is erroneously recognized as \ " more than

20% of the time). Though the results shown here are not directly comparable with the

CMU results, they are certainly competitive; especially considering that a discrete HMM

system is being compared with CMU's state-of-the-art tied-mixture recognizer.

79

A

Through the Looking Glass

The importance of this work presented here may be summarized as follows. Tree-based

probability models can extract contextual information from the high-dimensional space

formed by feature concatenation, and can also yield useful information about the relative

importance of feature-space dimensions. Tree-based models lend themselves to rapid train-

ing, which may be practical for talker adaptation. Tree-based models can achieve signi�-

cantly better recognition performance than conventional minimum-distortion VQ, however,

the tree-based model must be detailed and be trained with an adequate amount of train-

ing data. Previous work ([64, 2]) using decision trees for quantization has been generally

unsuccessful; neither approach ultimately yielded signi�cantly better performance than a

conventional HMM system. This is perhaps because the trees used were relatively small,

may have been undertrained, and did not use su�ciently wide context windows. The ex-

periments reported in Chapter 5 indicate that both a large context window and a large tree

is required to achieve better performance than a conventional VQ system.

80

\There's the tree in the middle," said the
Rose: \what else is it good for?"

Lewis Carroll,

Future Applications and

Conclusions

Chapter 6

At this point, some discussion is perhaps warranted as to why the tree-based HMM

system works any better than the baseline system. Firstly, the quantization regions are

determined by class distributions, not a distortion metric which is independent of the class

distributions. Secondly (and perhaps most importantly), the large context windows used

(30{90 ms), together with the MMI tree construction, allow the quantizer to extract useful

information about feature variability, i.e., the time-varying cues that discriminate between

classes (HMM states). Finally, large trees partition the feature space into many more bins

than is practical with a conventional VQ system, allowing a more detailed probability model.

One measure of model detail is the number of parameters: the best-performing tree models

have nearly ten times more parameters than the baseline model. (It is fortunate that the

speech database is su�ciently large to reliably train the tree models.)

Chapter 5 presents the results of a particular set of tree models. Given the number of

independent variables in a tree model|the number of codebooks, the probability
oor, the

tree size and so forth|the space of possible experiments is large, and it is probable that a

more optimal set of tree parameters exists. Besides the obvious \tweaks" of window size and

codebook membership, there are a number of ways in which the tree-based models presented

here might be improved. The \time-recurrent tree" structure of 4.4.1 is promising and

deserves investigation. The partitioning of the feature space into codebooks was done in an

ad-hoc manner; it would be interesting to investigate the e�ects of di�erent partitions. One

strategy might be to partition dimensions according to their relative importance: dimensions

would be allocated to codebooks such that each codebook has relatively equal importance.

Another drawback of MMI-constructed trees is that they only take into account dif-

ferences in class-conditional probabilities, and are essentially useless for modeling class-

independent probabilities. This may be a drawback: consider a region in the feature space

81

lems

which is populated entirely by one class. Though the probability density may vary wildly

in that region, further splits will not be made in the region because they do not enhance

the class-discriminative powers of the tree. Thus the probability density in that region will

be treated as uniform when in fact it is not. A way around this might be to introduce a

\pseudo-class" that is uniformly distributed over the region. Splits that discriminate be-

tween the pseudo-class and the real class distributions will partition the node into regions of

di�ering probabilities. If the real class distribution is uniform or nearly so, then a split will

give no information and splitting may be stopped|but the cell will have an approximately

uniform distribution and thus matches the uniformity assumption.

Perhaps the most interesting aspect of this work is the large number of directions in which

it may be pursued. Possible applications of tree-based models are discussed in this section.

They include environmental adaptation, better talker independence, and investigation of

di�erent feature sets.

The performance graph of 5.11 shows that some talkers perform much worse than the

average, while few perform substantially better. Tolstoy has written \all happy families are

alike, but unhappy families are all di�erent in their own way." Similarly, it mat be that

\all good talkers are alike, but bad talkers are all di�erent in their own way." Of course,

bad talkers are not intrinsically bad, just talkers whose recognition results are poor. If

a system was trained purely on data from that talker, there is no reason to suspect that

performance would be any worse than any other talker-dependent system. This leads to

82

6.1.1 Talker Independence from \Eigentalker" Models

6.1 Possible Applications of Tree-based Models

an interesting speculation: suppose there are certain classes of talkers such that a system

trained on one talker will do well on any other talker in the class. For the sake of argument,

call a representative talker from each class an . One could imagine training

a number of eigentalker-dependent models, and making a talker-independent recognition

system by selecting the eigentalker model (or a linear combination of eigentalker models)

most appropriate to each new talker.

If the HMM output-probability distributions are viewed as clusters in feature space, the

bene�t of an eigentalker model is that each model should consist of relatively low-variance

clusters with di�erent means, while a talker-independent model needs a higher-variance,

\smeared-out" clusters to adequately represent the di�erent means from di�erent talker

classes.

Given a tree partition of the feature space, new tree-based models may be easily trained

using di�erent data from di�erent talkers. This results in two di�erent probability distri-

butions on the same feature-space partition. The \distance" between the two distributions

is easily calculated by any number of metrics, for example, the mutual information (cross-

entropy) of section 2.2.1. If this is done, it should provide a valuable metric as to how well

a given model actually models a new talker, in much the same way that the classi�cation

error was used in section 5.7.1. Hopefully, recognition performance could be enhanced by

selecting the most appropriate model on the basis of the distance measure. Possible metrics

include the relative classi�cation error, as discussed in Section 5.7.1; relative information

(Kullback's); even the maximum forward probability computed via

the Baum-Welch procedure. For unsupervised talker adaptation, the class-independent

83

eigentalker

information divergence

6.1.2 Model Distance Measures

probabilities might be used.

A substantial barrier to the widespread use of speech recognition systems is their lack of

robustness in di�erent acoustic environments. Merely changing the microphone can cause

a state-of-the-art speech recognition system to fail miserably, even in the absence of noise

or reverberation. Though no experiments were done, it may be surmised that a tree-based

probability model might be more robust to environmental di�erences than other models,

once again because tree construction is supervised: the tree is built to maximize important,

information-bearing di�erences while other variations are presumably ignored. In addition,

The talker-adaptation strategy just described could be used to enhance robustness through

environmental adaptation by using di�erent models to account for environmental variation.

Given a tree, the mutual information between the data and the classes may be calculated,

which is a quantitative measure of how much useful information about the classes may

be extracted from the data. The greater the mutual information, the better the feature

representation. Though this has some problems (for example, undertrained models will

likely have higher mutual information), it could be used as a \�gure-of-merit" to investigate

novel features. Feature sets having greater mutual information should result in better

recognition performance.

84

6.1.3 Environmental Robustness

6.1.4 Feature Set Ranking

The work presented here has hopefully shown that decision trees are a practical alternative

to conventional minimum-distortion vector quantizers. Though not a \magic bullet," they

have interesting advantages, such as computation speed which make them suitable for real-

world ASR applications. Perhaps most intriguing is the number of interesting avenues that

remain to be explored.

85

6.2 Conclusion

[1] M. Anikst et al. The SSI large-vocabulary speaker-independent continuous-speech
recognition system. In [46], pages 337{340.

[2] M. Anikst, W. Meisel, M. Soares, and K. Lee. Experiments with tree-structured MMI
encoders on the RM task. In

[28], pages 346{351.

[3] S. Austin, J. Makhoul, R. Schwartz, and G. Zavaliagkos. Continuous speech recognition
using segmental neural nets. In

[29], pages 249{252.

[4] L. Bahl, P. Brown, P. de Souza, P. Gopalakrishnan, and R. Mercer. A tree-based
language model for natural language speech recognition. , ASSP-
37(7):1001{1008, August 1989.

[5] L. R. Bahl, S. Das, P. V. de Souza, M. Epstein, R. Mercer, B. Merialdo, D. Nahamoo,
M. Picheny, and J. Powell. Automatic phonetic baseform determination. In

[46], pages 173{176.

[6] L. R. Bahl, P. V. de Souza, P. S. Gopalakrishnan, D. Nahamoo, and M. A. Picheny.
Decision trees for phonological rules in continuous speech. In [46],
pages 185{188.

[7] L. R. Bahl, P. V. de Souza, P. S. Gopalakrishnan, and M. A. Picheny. Context de-
pendent vector quantization for continuous speech recognition. In
[48], pages 632{635.

[8] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occur-
ring in the statistical analysis of probabilistic functions of Markov chains.

, 41:164{171, 1970.

[9] J. Bellegarda and D. Nahamoo. Tied mixture continuous parameter modeling for
speech recognition. , ASSP-38(12):2033{2045, December 1990.

[10] R. Bellman. . Princeton University Press, Princeton, New
Jersey, 1961.

[11] J. Bentley. Multidimensional binary search trees used for associative searching.
, 18(9):509{517, September

1975.

86

Proc. 1991 ICASSP

Proc. Third DARPA Speech and Natural Language Work-

shop

Proc. Fourth DARPA Speech and Natural Language

Workshop

IEEE Trans. ASSP

Proc. 1991

ICASSP

Proc. 1991 ICASSP

Proc. 1993 ICASSP

Annals of

Mathematical Statistics

IEEE Trans. ASSP

Adaptive Control Processes

Com-

munications of the Association for Computing Machinery

Bibliography

[12] Michael M. Blane. Vector quantization for a talker-independent connected alphadigit
speech recognizer using discrete hidden Markov models. Master's thesis, Brown Uni-
versity, Providence, Rhode Island, May 1990.

[13] E. L. Bocchieri and J. G. Wilpon. Discriminative analysis for feature reduction in
automatic speech recognition. In [47].

[14] H. Bourlard, N. Morgan, C. Wooters, and S. Renals. CDNN: a context dependent
neural network for continuous speech recognition. In [47], pages
49{52.

[15] H. Bourlard and C. Wellekens. Links between Markov models and multilayer percep-
trons. , PAMI-12(12):1167{1178, December 1990.

[16] Herv�e Bourlard.
. Ph.D. thesis, Facult�e Polytechnique de Mons, Belgium, 1992.

[17] C. Bregler, H. Hild, S. Manke, and A. Waibel. Improving connected letter recognition
by lipreading. In [48].

[18] L. Breiman, J. Friedman, R. Olshen, and C. Stone. .
Wadsworth International Group, Belmont, Calif., 1984.

[19] J. S. Bridle and L. Dodd. An alphanet approach to optimising input transformations
for continuous speech recognition. In [46], pages 277{280.

[20] P. F. Brown. . Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1987.

[21] R. Cardin, Y. Normandin, and R. De Mori. High performance connected digit recog-
nition using codebook exponents. In [47], pages 505{508.

[22] R. Casey and G. Nagy. Decision tree design using probabilistic models.
, IT-30(1):93{99, January 1984.

[23] C. H. Chen. On information and distance measures, error bounds, and feature selection.
, 10:159{173, 1976.

[24] P. Chou. Optimal partitioning for classi�cation and regression trees.
, 13(4):340{354, April 1991.

[25] R. Cole and M. Fanty. Spoken letter recognition. In
[28], pages 385{390.

[26] T. Cormen, C. Leiserson, and R. Rivest. . The M.I.T. Press,
Cambridge, Massachussets, 1990.

[27] T. Cover and J. Thomas. . John Wiley & Sons, Inc.,
New York, 1991.

[28] DARPA. , Hidden Valley,
Pennsylvania, June 1990. Morgan Kaufman Publishers, Inc.

87

Proc. 1992 ICASSP

Proc. 1992 ICASSP

IEEE Trans. PAMI

Continuous Speech Recognition: from Hidden Markov Models to Ar-

ti�cial Neural Networks

Proc. 1993 ICASSP

Classi�cation and Regression Trees

Proc. 1991 ICASSP

The Acoustic Modeling Problem in Automatic Speech Recognition

Proc. 1992 ICASSP

IEEE Trans.

IT

Information Sciences

IEEE Trans.

PAMI

Proc. Third DARPA Speech and

Natural Language Workshop

Introduction to Algorithms

Elements of information theory

Proc. Third DARPA Speech and Natural Language Workshop

[29] DARPA. , Paci�c Grove,
California, February 1991. Morgan Kaufman Publishers, Inc.

[30] Lewis Carroll [Charles Dodgson]. .
Macmillan, New York, 1955.

[31] R. Duda and P. E. Hart. . Wiley, New York,
1973.

[32] S. Euler, B. Juang, C. Lee, and F. Soong. Statistical segmentation and word modeling
techniques in isolated word recognition. In [45], pages 745{748.

[33] J. Foote. The LEMS DAT/SCSI interface: User's guide and technical reference. Tech-
nical Report 95, LEMS, Division of Engineering, Brown University, Providence RI,
1991.

[34] J. T. Foote, M. M. Hochberg, P. M. Athanas, A. T. Smith, M. E. Wazlowski, and H. F.
Silverman. Distributed hidden Markov model training on loosely-coupled multiproces-
sor networks. In [47], pages 569{572.

[35] H. Gu, C. Tseng, and L. Lee. Isolated-utterance speech recognition using hidden
Markov models with bounded state durations. ,
SP-39(8):1743{1752, August 1991.

[36] M. Hochberg, J. Foote, and H. Silverman. A comparison of state-duration distribu-
tions for HMM-based, connected speech recognition. To appear in

.

[37] M. Hochberg, J. Foote, and H. Silverman. The LEMS talker-independent connected
speech alphadigit recognition system. Technical Report 82, LEMS, Division of Engi-
neering, Brown University, Providence RI, 1991.

[38] M. Hochberg, L. Niles, J. Foote, and H. Silverman. Hidden Markov model/neural
network training techniques for connected alphadigit speech recognition. In

[46], pages 109{112.

[39] Michael M. Hochberg.
. Ph.D. thesis, Brown University, Providence, Rhode

Island, May 1992.

[40] X. D. Huang, H. W. Hon, and K. F. Lee. On semi-continuous hidden Markov modeling.
In [45], pages 689{692.

[41] M-Y. Hwang and X. Huang. Subphonetic modeling with Markov states | senone. In
[47].

[42] L. Hya�l and R. Rivest. Constructing optimal binary decision trees is NP-complete.
, 5:15{17, May 1976.

[43] IEEE.
, Tampa, Florida, March 1985.

[44] IEEE.
, Dallas, Texas, April 1987.

88

Proc. Fourth DARPA Speech and Natural Language Workshop

Through the looking glass and what Alice found there

Pattern Classi�cation and Scene Analysis

Proc. 1990 ICASSP

Proc. 1992 ICASSP

IEEE Transactions on Signal Processing

IEEE Trans. Signal

Processing

Proc. 1991

ICASSP

A Comparison of State-Duration Distributions for HMM-Based,

Connected Speech Recognition

Proc. 1990 ICASSP

Proc. 1992 ICASSP

Information Processing Letters

Proc. 1985 International Conference on Acoustics, Speech, and Signal Process-

ing

Proc. 1987 International Conference on Acoustics, Speech, and Signal Process-

ing

[45] IEEE.
, Albuquerque, New Mexico, April 1990.

[46] IEEE.
, Toronto, Canada, May 1991.

[47] IEEE.
, San Francisco, California, March 1992.

[48] IEEE.
, Minneapolis, Minnesota, April 1993.

[49] F. Jelinek. Continuous speech recognition by statistical methods. ,
64(4):532{566, April 1976.

[50] D. Jouvet, A. Lain�e, J. Monn�e, and C. Gagnoulet. Speaker-independent spelling recog-
nition over the telephone. In [48].

[51] B. Juang and L. Rabiner. The segmental -means algorithm for estimating parameters
of hidden Markov models. , ASSP-38(9):1639{1641, Sept 1990.

[52] B. Juang, L. Rabiner, and J. Wilpon. On the use of bandpass liftering in speech
recognition. , ASSP-35(7):947{954, July 1987.

[53] Kai-Fu Lee. .
Kluwer Academic Publishers, Boston, 1989.

[54] Kai-Fu Lee. Personal communication, June 1993.

[55] H. Leung and V. Zue. A procedure for automatic alignment of phonetic transcriptions
with with continuous speech. In [43], pages 2.7.1{2.7.4.

[56] S. Levinson. Continuously variable duration hidden Markov models for automatic
speech recognition. , 1:29{45, 1986.

[57] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the applica-
tion of the theory of probabilistic functions of a Markov process to automatic speech
recognition. , 62(4):1035{1074, April 1983.

[58] P. Lewis. The characteristic selection problem in recognition systems.
, 8:171{178, February 1962.

[59] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design.
, COM-28(1):84{95, January 1980.

[60] Richard P. Lippmann. An introduction to computing with neural nets.
, pages 4{22, April 1987.

[61] A. Ljolje and S. Levinson. Development of an acoustic-phonetic hidden Markov model
for continuous speech recognition. , ASSP-39(1):29{39, January
1991.

[62] A. Ljolje and M. Riley. Automatic segmentation and labeling of speech. In
[46], pages 473{476.

89

K

Proc. 1990 International Conference on Acoustics, Speech, and Signal Process-

ing

Proc. 1991 International Conference on Acoustics, Speech, and Signal Process-

ing

Proc. 1992 International Conference on Acoustics, Speech, and Signal Process-

ing

Proc. 1993 International Conference on Acoustics, Speech, and Signal Process-

ing

Proc. IEEE

Proc. 1993 ICASSP

IEEE Trans. ASSP

IEEE Trans. ASSP

Automatic Speech Recognition: The Development of the SPHYNX System

Proc. 1985 ICASSP

Computer Speech and Language

The Bell System Technical Journal

IRE Trans.

Inform. Theory

IEEE

Trans. Comm.

IEEE ASSP

Magazine

IEEE Trans. ASSP

Proc. 1991

ICASSP

[63] H. Murveit, J. Butzberger, and M. Weintraub. Speech recognition in SRI's Resource
Management and ATIS systems. In

[29], pages 94{100.

[64] M. Ostendorf and J. R. Rohlicek. Joint quantizer design and parameter estimation for
discrete hidden Markov models. In [45], pages 705{708.

[65] Kuldip Paliwal. Dimensionality reduction of the enhanced feature set for the HMM-
based speech recognizer. , 2:157{173, 1992.

[66] D. Paul, J. Baker, and J. Baker. On the interaction between true source, training,
and testing language models. In

[28], pages 185{189.

[67] Douglas Paul. The Lincoln tied-mixture HMM continuous speech recognizer. In
[28], pages 332{336.

[68] M. Phillips, J. Glass, and V. Zue. Modeling context dependency in acoustic-phonetic
and lexical representations. In

[29], pages 71{78.

[69] Thomas Pynchon. . Viking Penguin, New York, USA, 1973.

[70] L. Rabiner and F. Soong. Single-frame vowel recognition using vector quantization
with several distance measures. , 64:2319{2330, December 1985.

[71] L. Rabiner, J. Wilpon, and F. Soong. High performance connected digit recognition
using hidden Markov models. , 37(ASSP-8):1214{1225, August
1989.

[72] L. R. Rabiner, B.-H. Juang, S. E. Levinson, and M. M. Sondhi. Recognition of isolated
digits using hidden Markov models with continuous mixture densities.

, 64(6):1211{1270, July-August 1985.

[73] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. , 77(2):257{286, February 1989.

[74] M. Rahim. A neural tree network for phoneme classi�cation with experiments on the
TIMIT database. In [47], pages 345{348.

[75] V. Ramasubramanian and K. Paliwal. Fast -Dimensional tree algorithms for nearest
neighbor search with application to vector quantization encoding. ,
SP-40(3):518{531, March 1992.

[76] S. Renals and N. Morgan. Connectionist probability estimation in HMM speech recog-
nition. Technical Report TR-92-081, International Computer Science Institute, Berke-
ley, California, 1992.

[77] S. Renals, N. Morgan, and H. Boulard. Probability estimation by feed-forward networks
in continuous speech recognition. Technical Report TR-91-030, International Computer
Science Institute, Berkeley, California, 1991.

[78] Tony Robinson. A real-time recurrent error propagation network word recognition
system. In [47], pages 617{620.

90

k

Proc. Fourth DARPA Speech and Natural Language

Workshop

Proc. 1990 ICASSP

Digital Signal Processing

Proc. Third DARPA Speech and Natural Language

Workshop

Proc.

Third DARPA Speech and Natural Language Workshop

Proc. Fourth DARPA Speech and Natural Language

Workshop

Gravity's Rainbow

Bell Sys. Tech. J.

IEEE Trans. ASSP

AT&T Technical

Journal

Proceedings of the IEEE

Proc. 1992 ICASSP

IEEE Trans. SP

Proc. 1992 ICASSP

[79] A Rosenfeld and A. Kak. . Academic Press, Orlando, 2nd
edition, 1982.

[80] R. Schwartz, Y.Chow, O. Kimball, S. Roucos, M.Krasner, and J. Makhoul. Context-
dependent modeling for acoustic-phonetic recognition of continuous speech. In

[43], pages 1205{1208.

[81] I. Sethi and G Sarvarayudu. Hierarchical classi�er design using mutual information.
, 4(4):441{445, July 1982.

[82] H. Silverman and N. Rex Dixon. A comparison of several speech-spectra classi�cation
methods. , ASSP-24(4):289{295, August 1976.

[83] Harvey Silverman. On the implementation and computation of training an HMM
recognizer having explicit state durations and multiple-feature-set tied-mixture output
probabilities. , June 1993.

[84] J. Str�omberg, J. Zrida, and A. Isaksson. Neural trees: Using neural nets in a tree
clasi�er structure. In [46], pages 137{140.

[85] Lao Tzu. . Vintage, New York, 1972. Trans. Gia-Fu Feng and Jane
English.

[86] A. Waibel, T. Hawnazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition
using time-delay neural networks. , ASSP-37(3):328{339, March
1989.

[87] Satosi Watanabe. Pattern recognition as a quest for minimum entropy.
, 13(5):381{387, February 1981.

[88] C. Wellekins. Explicit time correlation in hidden Markov models for speech recognition.
In [44], pages 384{387.

[89] C. Wightman and M. Ostendorf. Automatic recognition of intonational features. In
[47], pages 221{224.

[90] J. G. Wilpon, C.-H. Lee, and L. R. Rabiner. Improvements in connected digit recogni-
tion using higher order spectral and energy features. In [46], pages
349{352.

[91] Ludwig Wittgenstein. . Harper & Row, New York, 1969.
Ed. G. E. M. Anscombe and G. H. von Wright.

[92] V. Zue, S. Sene�, and J. Glass. Speech database developmant at MIT: TIMIT and
beyond. , 9(4):351{356, August 1990.

91

Digital Picture Processing

Proc.

1985 ICASSP

IEEE Trans. PAMI

IEEE Trans. ASSP

In preparation

Proc. 1991 ICASSP

Tao Te Ching

IEEE Trans. ASSP

Pattern Recog-

nition

Proc. 1987 ICASSP

Proc. 1992 ICASSP

Proc. 1991 ICASSP

�Uber Gewi�heit [On Certainty]

Speech Communication

