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ABSTRACT

We present methods for automatic and semi-automatic creation of
music videos, given an arbitrary audio soundtrack and source
video. Significant audio changes are automatically detected; simi-
larly, the source video is automatically segmented and analyzed for
suitability based on camera motion and exposure. Video with
excessive camera motion or poor contrast is penalized with a high
unsuitability score, and is more likely to be discarded in the final
edit. High quality video clips are then automatically selected and
aligned in time with significant audio changes. Video clips are
adjusted to match the audio segments by selecting the most suit-
able region of the desired length. Besides a fully automated solu-
tion, our system can also start with clips manualy selected and
ordered using a graphical interface. The video is then created by
truncating the selected clips (preserving the high quality portions)
to produce a video digest that is synchronized with the soundtrack
music, thus enhancing the impact of both.
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1. INTRODUCTION

The widespread proliferation of persona video cameras has
resulted in huge a data management problem. Virtually all cam-
corder owners own a dusty pile of home-recorded videotapes that
are too precious to throw away, but too tedious to actually watch in
their entirety. The situation is aggravated by the poor sound quality
of informal video. Without professional sound recording and post-
production, even otherwise well-produced video appears amateur-
ish. In fact, studies have shown that poor sound quality degrades
the perceived video image quality [17].

We present a solution: a fully- or semi-automatic video summa-
rizer that can condense a lengthy home movie into a compelling 3
minute music video, set to the music of one's choice, and suitable
for sharing with friends and family. In operation, the user selects a
favorite musical work for the soundtrack, and a longer source
video. Typicaly this will be a home video, though any source
video may be used. The music is automatically segmented and ana-
lyzed for tempo, while the video is automatically segmented and
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Figure 1. Automatically editing video to synchronize with a
shorter audio soundtrack.

analyzed for unsuitability. The results of this andysis include a
time-indexed audio novelty score, in which peaks correspond to
points of significant change in the soundtrack audio. The video
analysis produces a time-indexed unsuitability score which is
based on estimated camera motion and brightness. These two time
series have peaks at segment boundaries in the music and clip
boundaries in the video, respectively. To align the video and audio
tracks, video clips are truncated, combined, and/or discarded such
that the final set of clip boundaries align exactly with significant
audio changes to produce a professional-appearing music video.
Raw video with unsuitable camera motion or exposure is preferen-
tidly discarded by the agorithm. By selecting the soundtrack
music, the user can tailor the tempo and mood of the resulting
high-quality video, making it into a more personal statement.

Music videos can also be created semi-automatically using a
graphical interface. In this mode, automatic video analysis is used
to segment the source video into clips. The user then selects and
ordersthe video clips on atimeline. The user may optionally lock a
video clip start or endpoint. The system determines the lengths and
portions of the remaining clips by using automatic analysis to pre-
serve video with low camera motion and good exposure.

In developing this system, we have relied on several key assump-
tions. The first is that improved soundtrack quality improves per-
celved video image quality, and thus using professional-quality
audio for home video will improve the perception of the latter. This
fact is a truism in the film industry, and has been affirmed in a
number of studies. One study at MIT showed that listeners judge
the identical video image to be higher quality when accompanied
by higher-fidelity audio [17]. A second assumption isthat synchro-
nizing video and audio segments enhance the perception of both.
Again, thisis acommon practice of cinematic sound editors world-
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Figure 2. Automatic music video system block diagram

wide, and furthermore is backed by quantitative results. For exam-
ple, Lipscomb [13,14] presents user studies demonstrating that the
“effectiveness’” of a film clip is generally enhanced when audio
events are synchronized with video events. A third assumption is
that users require control over which video clips are included, and
thus fully-automatic solutions will be generally less satisfactory
than a user-assisted approach. Section 5 presents a user interface
that affords agreat deal of user control with very simple operation.

2. RELATED WORK

Automatically aligning video with unrelated audio is relatively
novel, though there has been work on aligning lip movements to
recorded speech [1]. Severa groups have reported work on musical
beat-tracking and analysis. A recent approach uses correlated
energy peaks across sub-bands [20]. Another approach relies on
restrictive assumptions that the music be in 4/4 time with a bass
drum on the downbeat [9]. Existing approaches commonly make
limiting assumptions about rhythmic features of the audio signal,
and will thus fail for any music, such as orchestral, which lacks
them. In contrast, the methods used here have been shown to be
robust across a wide variety of jazz, orchestral, and popular musi-
cal genres[5].

Various methods have been proposed to summarize video
[2,18,21]. These methods chiefly rely on transcribed text to deter-
mine the video segments to be included in summaries. Such datais
not usually available for home video. Work at Intel [12] discusses
the issues of low quality home video and presents an automatic
digest creation for home video. Their method selects portions of
video shots with good quality and inserts video effects for transi-
tions, however audio considerations are not addressed.

A commercial venture, muvee.com [16], advertises an automatic
system for producing music videos. Though no details of the algo-
rithm are available, editing is accomplished using a rule-based sys-
tem to produce one of several video “styles” Although the system
claims to automatically analyze the soundtrack audio and video
streams, the system does not include any means for user interaction
like that provided by our interface (as described in Section 5).
Suzuki et a. have built video editing tools for composing movies,
using heuristics derived from music theory [23]. Asaresult, videos
manually produced using this system are well synchronized with
sound, which is deemed to be desirable. This is an encouraging
result for this work, which performs a similar task automatically.

3. AUDIO AND VIDEO ANALYSIS

Figure 2 shows ablock diagram of the video creation system. First,
video and audio are selected for input to the system. The input

audio need not be related to the video in any way — to avoid con-
fusion with the soundtrack from the source video (if any) the input
audio is referred to as the soundtrack audio. The video may contain
sound, which can either be discarded or mixed with the soundtrack
audio to produce the final music video soundtrack. First, the source
video is divided into clips. When editing video in the DV digita
camcorder format, we denote a camera on-off sequence as a“take.”
These high-level boundaries can be determined from metadata in
the DV stream. Each “take” is further segmented into “clips’ sepa-
rated by areas of fast camera motion. If video take boundaries are
unavailable, they can be estimated in a similar manner as that used
to determine the audio change [4], or by any number of video seg-
mentation algorithms[2]. Next, the audio is analyzed to detect seg-
ment boundaries, which correspond to peaks in a “novelty score.”
The video clips are then automatically edited by discarding unsuit-
able portions so that the remaining video is aligned with the audio
changes. Figure 1 depicts schematically how video clip boundaries
are digned to major changes in the audio, as described further in
Section 4.

3.1 Audio Parameterization

A crucid step is the initial audio anaysis. If changes cannot reli-
ably be detected, the perceived quality of the resulting music video
will suffer, per our assumptions. Straightforward approaches to
audio segmentation based on spectra differences are generaly
unsatisfactory because they yield too many false aarms. Typical
speech and music constantly fluctuate, and it is difficult to discrim-
inate significant changes from ordinary variation. Instead, we
employ audio self-similarity analysis, following [5]. At each
instant, the self-similarity for past and future regions is computed,
as well as the cross-similarity between the past and future. A sig-
nificantly novel point will lie between regions of high self-similar-
ity. These regions before and after the novel point will also exhibit
low cross-similarity. The temporal extent of the “past” and
“future” can be varied to change the scale of the analysis. An
advantage of this approach is that it effectively uses the signal to
model itself, and thus requires minima assumptions about the
nature or genre of the analyzed signal. This makes it robust to a
wide variety of input sources, from Vivaldi to heavy metal.

For audio, we use a reasonably standard spectral parameterization,
based on the short-term Fourier transform (STFT). Audio is first
converted to a monophonic representation at aFg= 22.05 kHz sam-
pling rate. Thisis analyzed in short frames of 512 samples, spaced
at 1/30 second intervals (735 samples). The DFT of each window
is taken, and the log of the magnitude is calculated. The resulting
power spectrum is quantized into 30 bins evenly spaced from 0O to
Fg4 Hz (roughly 5.5 kHz).This results in a 30-dimensional feature
vector at a 30 Hz frame rate. The sampling rates, window sizes, or
quantization bins may be varied to tailor the analysis to emphasize
particular audio features. We have also successfully experimented
with alternative audio parameterizations including Mel-frequency
cepstral coefficients, Mel-scaled spectrograms, and spectral fea
tures based on the Karhunen-Loeve transform [22].

3.2 Self-Similarity Analysis of Audio

Once the signal has been parameterized, it is then embedded in a
two-dimensional representation. The key is a measure D of the

(dis)similarity between feature vectors v, and v, calculated from
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frames i and j. We employ the cosine of the angle between the
parameter vectors.
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This similarity measure has the property that it can yield a large
similarity score even if the vectors are small in magnitude. Thisis
generally desirable so that similar regions with low energy will be
judged highly similar. For most applications, subtracting the over-
al mean from each vector produces a more informative similarity
score.

The similarity between every pair of instantsin a source signal can
be embedded in a square matrix S, such that thei, | lement of S
is D(i.j), as shown in Figure 3. Generally, S will have maximum
values on the diagonal (because every window will be maximally
similar to itsdlf); furthermoreif D is symmetric then Swill be sym-
metric aswell. Sis readily visualized as a square image [5]. Each
pixel i, j is colored with agray scale value proportional to the simi-
larity measure D(i,j). These visualizations let us clearly see the
structure of an audio file. Regions of high similarity, such as
silence or a single note, appear as bright squares on the diagonal.
Repeated notes are visible as bright off-diagonal rectangles. A high
degree of repetition in the audio will be visible as diagonal stripes,
offset from the main diagonal by the repetition time.

Figure 4 shows a similarity matrix for 30 seconds of the song The
Magical Mystery Tour by The Beatles. Coherent audio segments
are visible as large bright squares along the main diagonal. Seg-
ment boundaries produce distinctive checkerboard features on the
diagonal, for example near 78 and 82 seconds. These correspond to
significant chord changesin the bridge.

3.3 Audio Segmentation via Kernel Correlation

We measure the novelty as a function of time by detecting the
checkerboard-like features along the main diagonal of the similar-
ity matrix. Travelling along the diagona corresponds to moving
adong in time. White squares on the diagona correspond to high
self-similarity regions; black squares on the off-diagonals corre-
spond to regions of low cross-similarity. Using the cosine metric,
similar regions will be close to 1 (brighter in Figure 4) while dis-
similar regions will be closer to -1 (darker). To measure audio
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Figure4. (top) Similarity matrix visualization for The Magical
Mystery Tour by The Beatles.
Figure5. (bottom) M easure of change derived from similarity
matrix, using 121 x 121 sample checkerboard kernel

change, we determine how much a particular point on the diagonal
looks like the crux of a checkerboard, that is, we look for regions
of low cross-similarity (dark on the upper left and lower right) and
high self-similarity before and after (white upper right and lower
left). We measure this using a classic “matched filter” technique:
by running a checkerboard along the diagonal and seeing how well
it matches. This can be done by correlating S with a kernel that
itself looks like a checkerboard. Perhaps the simplest is the 2x2

unit kernel:
c=|1-
-11

Larger kernels are easily constructed and can be smoothed to avoid
edge effects using windows that taper towards zero at the edges.
For the experiments presented here, aradially-symmetric Gaussian



Figure 6. 64 x 64 checkerboard kernel with Gaussian taper

function is used. Figure 6 shows a a 64 x 64 checkerboard kernel
with aradial Gaussian taper having 6 = 32.

Correlating a checkerboard kernel along the diagonal of similarity
matrix S results in a measure of novelty. We calculate the correla-
tion along the main diagonal of Sto obtain atime-indexed measure
of audio novelty N(i), wherei is the frame number:

L/2 L/2
N(i)= z z C(m,n)S(i + m,i +n)
m=-L/2 n=-1/2

The width of the kernel L directly affects the properties of the nov-
elty measure. A small kernel detects novelty on a short time scale.
Larger kernels average over short-time novelty, such as notes, and
detect longer-term structure. We use this property directly for
music video creation. To ensure a minimum edited video clip
length of a few seconds, we use kernels of about this width to seg-
ment the audio soundtrack.

Figure 5 shows the novelty measure for an excerpt from The Magi-
cal Mystery Tour. Peaks in the novelty measure correspond to
audio segment boundaries; the larger the peak, the more dramatic
the change. A 121 x 121 kernel was used, corresponding to a ker-
nel width of 6.05 seconds. Large peaks have been annotated with
the corresponding times in the similarity matrix, showing how they
detect significant audio transitions.

3.4 Segmenting and Editing Video

In general, video must be discarded to match the audio, which is
typically shorter. Our approach is to preferentially discard video
that is unsuitable due to excessive camera motion or poor expo-
sure, both common problems in amateur video. To this end we
compute an “unsuitability score” which is a measure of both cam-
era motion and video brightness. High values of the unsuitability
score indicate excessive camera motion or overexposure.

When editing video in the DV digital camcorder format, video take
boundaries are stored in the video data. Takes can be further subdi-
vided into “clips’ based on camera motion and the amount of
brightness. For example, a take might contain two still portions
separated by a fast pan. In such a situation, it is better to have two
clipsand to trim each of them independently rather than attempting
to manipulate the whole take.

To quantify the suitability, we represent estimated camera motion
and brightness as a numeric unsuitability score [6,8]. To detect

excessive camera motion, we first estimate camera speed and
direction. Thisis done by finding the shift that results in the mini-
mum root-mean-square difference between adjacent frames. The
first difference is computed based on a shift of 32 pixels in the
eight cardinal and diagonal directions; the second based on 16; and
so forth. This vector is averaged over five frames. Because exces-
sive tilt is subjectively worse than pan, we penalize the horizontal
speed by a factor of three. We normalize this to an unsuitability
score proportiona to the square root of the camera speed. An
unsuitability score of 0.5 represents a pan of one frame width in
one second or atilt of one frame height in two seconds. We con-
sider this to be the maximum desirable camera motion; higher
unsuitability scores help ensure that video with more objectionable
motion is not included in the final output.

For determining suitability based on the brightness of a video
frame, we compute the fraction of the total pixels above a bright-
ness threshold. For the videosin our library?, we found that 20% of
the pixels with at least 45% brightness is a reasonable exposure.
For the unsuitability score, we map the range between 0% and 20%
to alinearly decreasing score. For the overall unsuitability score,
we use the maximum of the brightness and motion unsuitability.

Figure 7 shows the unsuitability score for video taken by a col-
league. The amount of camera motion here is excessive by profes-
sional video production standards, but common in home video. We
identify candidate clip boundaries as peaks in the moving average
of the unsuitability score. The window size for the moving average
is adjustable to get more or fewer video clips. The peak threshold
is adjusted between 0.5 and 1 proportionally to the window size.
The gray area in the figure represents the moving average over a
window of 1.5 seconds. The figure shows where the video is seg-
mented into clips at average peaks that exceed a threshold of 0.75
(clip boundaries at 236.2, 242.1, and 277.9 seconds).

For the alignment to the soundtrack audio, we automatically adjust
the window size until the number of clip boundaries equals the
number of peaks in the audio novelty score. We then locate the
peak for each part of the moving average curve that is completely
above the threshold. Those peaks are our candidate clip bound-
aries. If aclip between the candidate boundaries does not meet the
minimum length requirement (e.g., three seconds), we keep merg-
ing it with its neighbor until the minimum length is reached. Such
asegmentation leads to clips mainly below the unsuitability thresh-
old with regions above the threshold at the endpoints. Figure 8 for
shows avideo clip from Figure 7 in higher time resol ution.

Depending on the audio, a smaller or larger portion of the low
unsuitability region will be included in the video. For a given clip
length, we choose the portion that minimizes the area under the
unsuitability curve. Increasing the clip length pushes the selected
region out into the “hills’ of unsuitability. Figure 8 shows how
increasing the clip length results in the black, dark gray, and light
gray areas being respectively selected.

4. ALIGNING AUDIO AND VIDEO

Given the peaks from the audio novelty score and the video clip
boundaries, we have experimented with several methods for align-

136 home and trip videos in DV format ranging from 10 to 90
minutes taped by user study participants, researchers, and friends.
Total length is 1035 minutes.
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Figure7. (top) Unsuitability Scorewith Clip Boundaries
Figure 8. (bottom) Selected Clip Portions

ing the audio and the video. One simple solution is to count the
number of video clip boundaries and to select the corresponding
number of the largest audio changes. This approach has the advan-
tage that no thresholds are needed; ranking peaks by height results
in a de facto self-adjusting threshold. If a fixed list of audio seg-
ments is supplied, then video clips can be selected and edited in
time-order until there are enough suitable clips for the final music
video. Those peaks in the audio novelty score can then be aligned
with the video clip boundaries. As discussed in the previous sec-
tion, the length of the video clips can then be adjusted to match the
audio. If the time between two audio peaksislonger than the avail-
able clip, severa clips can be combined. We assume, of course,
that the video is longer than the audi ol. If not, asi mple solution is
just to duplicate the video so some parts are repeated. We also
assume home video is highly redundant, and if only portions of
most clips are retained, the video can be reduced in length by a
large factor without significantly omitting desired content.

Figure 1 illustrates our method for automatic music video creation.
Once change measures have been computed for the soundtrack
audio, major peaks are aligned with the video clip boundaries. The

L1n our experience, thisis a relatively safe assumption. The reader
isinvited to recall examples of home videos shorter than atypical
3-minute popular song.

necessary clip lengths are found from the distance between audio
novelty peaks. Then the video clips are truncated to the length of
each audio segment according to the suitability score.

Automatic analysis of home video often produces a large number
of video clips, owing to the typically poor quality of amateur
video. Reducing the sensitivity of the video segmentation by
increasing the window size for the moving unsuitability average
can help, as can only using the video clips of a higher average suit-
ability. In practice, we base the segment structure of the music
video on that of the (professionally produced) soundtrack audio,
which leads to a more coherent final product. We threshold the
peaks of the audio novelty score so that only major audio changes
are considered. In addition, we impose a minimum audio segment
length of three seconds.

For fully-automatic operation, we can select the video clips with
maximum suitability. To reorder video clipsto match the audio, the
average unsuitability score can be minimized by aligning the long-
est audio segments with the maximally suitable video clips. A sim-
ple approach is to sort the audio segments by descending length.
For each segment, locate the most suitable remaining video clip for
that length (time complexity O(nz), where nisthe number of audio
segments). Alternatively, best-first tree traversals or Dynamic Pro-
gramming techniques (DP) [11] can improve and speed up the
matching process. We are investigating DP to rearrange the order
of video clips, for example, to match energetic musical passages to
clips containing alot of motion. The DP agorithm iswell suited to
the specia conditions of this application; in particular the distance
and matching weights can be chosen such that large peaks must
match, and that large time jumps in the video are not penalized.

5. USER CONTROL

In many cases, it is preferable to let the user select and order the
clips rather than letting the system do this automatically. This
ensures that clips most important or interesting to the user are
included, regardless of their quality. In this case, video clips are
automatically segmented and then presented to the user, who then
selects the ones to use. If the system produces too many or too few
clips, the user may change the segmentation sensitivity.

We have built an interactive video editing system, dubbed Hitch-
cock, that facilitates easy drag-and-drop video editing [7]. The
Hitchcock system allows usersto connect a DV camcorder to a PC,
then automatically copy the video to the PC and extract informa-
tion such as camera on/offs and recording times for each take. The
system calculates the video unsuitability, computes color histo-
grams for clustering, and selects appropriate keyframes to repre-
sent each clip. Once the video has been copied and processed
(which takes real time for the copying and half as much again to
process), it can be edited with the Hitchcock user interface.

The Hitchcock interface allows the user to select clips from the raw
video, and to easily adjust their length and order. Two graphical
display regions comprise the Hitchcock user interface, as shown in
Figure 9. The top region lets users select clips from the raw video.
The bottom display allows users to order the clips along the time-
line and change the lengths of the clips.

We cluster clips by one of several criteria such as similar recording
times or similar color. Similar clips are placed into the same “pile”
In Hitchcock, each clip is represented by one keyframe in a pile,
and clips are stacked in tempora order. Mousing over the pile
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Figure 9. Hitchcock drag-and-drop video editing system.

reveals keyframes for the first five clips in the pile, so the pile's
contents can easily be determined. To see keyframes for the
remaining clipsin the pile, the user can expand the pile by clicking
on it. When expanding a pile, the current display is faded out and
the keyframes of the expanded pile are shown. The timeline at the
top displays the time extent of the pile in adarker color.

The lower region isatimeline for composing the output video. The
user drags keyframes from the selection display and places them
dong the timeline as in a storyboard. Keyframes, and hence clips,
can be reordered by dragging them around the timeline. Each key-
frame's area in the storyboard is roughly proportiona to the clip
length. A handle in the corner of each keyframe allows the user to
modify the clip length by resizing the representative keyframe.
However, the user-selected length may be overridden by the align-
ment process. For each clip, the system determines a preferred
length based on the user-selected keyframe size. The system auto-
matically truncates the clip to the best portion of the preferred
length using the unsuitability score described in Section 3.4. If
users do not like how the system truncates a clip, they can may
lock one or both ends to ensure that the clip length is only modified
at the unlocked end, allowing the user to preserve the desired por-
tions of the clip in the final music video (see Figure 10).

Users can aso create title images to be placed between clips or at
the beginning. Hitchcock automatically converts each title image
into a 10 second video clip that can be manipulated just like other
clips. Hitchcock allows instantaneous previews, unlike other video
editors that need a time-consuming rendering phase before the
edited video can be seen. This alows the users to instantly view

their edited video without having to wait for any rendering, at the
cost of fancy transition effects. The edit decision list for the video
controls the Microsoft Media Player via a Java applet (see the
player window in Figure 9). The player control jumps to a new
point in the source video at the end of a clip. The applet allows the
edited video to be previewed with VCR deck controls and a time
slider that allows the user to jump to any point. When constructing
music videos, we notice that the absence of clip transition effects
enhances the impact of synchronous audio and video changes.

Once the user completes a rough video edit by selecting clips,
order, and preferred length, we apply the methods of Section 4 to
automatically align and edit the selected clips to the chosen
soundtrack music. The source audio is replaced with the music in
the resulting DV AVI file. If if the user has not selected enough
video to cover the audio, an alert is generated (alternatively, the
system could use other unselected video or truncate the audio).
Title images are treated dightly differently: preferably they will

| | I
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Figure 10. Resizing a video clip with alocked end.



start on alarge audio change. If the users locked one or both ends
of avideo clip, the automatic alignment will respect those locks.
This will lead to suboptimal results if both ends are locked. (Pre-
sumably the user has locked the clip for areason, such asto ensure
that adesired video passage is not automatically discarded.)

6. RESULTS

We have automatically created a number of music videos, using a
variety of video sources such as the “Home Video of Lisa’ [14]
and videos taken by colleagues and friends, and a variety of
soundtrack audio, including The Beatles, jazz, Vivaldi, and dance
music. Because this produces multimedia output, it is not obvious
how to present these results in a publishable form. Moreover, it
would be very desirable to measure how well the agorithms work.
However these are not objective results which can be benchmarked
against some agreed-upon ground truth. Rather, proper evaluation
reguires subjective results from a large number of users. Informal
judgements show that our method produces reasonably convincing
music videos. Each video summary contains all the significant
clips from the source video, which are noticeably aligned with
musical transitions, such as soft/loud or verse/chorus changes in
the soundtrack audio. For this paper, we have prepared a semi-
automatically produced example music video. We condensed a 22
minute home video into a three minute music video set to The
Magical Mystery Tour by The Beatles. We manually selected video
clips with the Hitchcock user interface, added titles, and had our
system automatically trim and align the video clips to the music.

Figure 11 shows the actual aignment of the first quarter of the
home video example to the first quarter of The Magical Mystery
Tour (note the different time scales). The top of the figure shows
the video unsuitability score. Video takes determined by the cam-
eraareindicated by aternating light gray and white areas. Thefifth
take was further subdivided into four clips as indicated by dark
gray areas (also shown in Figure 7). The alignment of video
boundaries to audio changes (peaks in the audio novelty) is indi-
cated by dashed lines.

In our experiments, we note a curious perceptual effect: frequent,
though coincidental, correspondences between video and the unre-
lated soundtrack music. Surprisingly often, these enhance the over-
all effect. For example, children on the trampoline in the “Home
Video of Lisa’ often bounce in time to the music, regardless of the
tempo. We call this the “Dark Side of the Rainbow” effect, after
the remarkable correspondences that reputedly exist between the
film The Wizard of Oz and the Pink Floyd album Dark Side of the
Moon, even though these are purely coincidental [10].

7. FURTHER IMPROVEMENTS

Our first experiments cover only a small portion of the design
space of these methods. Here we present some enhancements and
alternative algorithms for automatic video creation.

Rhythmic synchronization

An alternative video alignment method is more appropriate for
music with a distinctive tempo or beat, as is common in popular
music. Themusic for the soundtrack audio is analyzed to detect the
tempo at every moment in the music. Rhythmic analysis, such as
the methods of [20] or [5], are used to extract a basic repetition
time, or tempo. This serves as the minimum duration of the clip to
be used at that time, henceforth called the “base duration.” For
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Figure 11. Aligning video boundariesto peaksin audio novelty.

each detected beat or bar, a video clip is assigned. Then a portion
of the clip which has the equal length with the base duration is
extracted. Concatenating the truncated clips yields a video digest
synchronized to the chosen music. Using this method, slow-tempo
music like ballads results in longer clips because the base duration
is longer. On the other hand, more upbeat popular music resultsin
shorter clips and more rapid video changes, ala MTV. To set a
mood, users may also specify the desired length of included video
clips as amultiplier of the base duration. In this case, correspond-
ingly fewer video clips are used.

Combining source audio with soundtrack music

In the current system, any existing video sound is smply dis-
carded. However, in many cases it might be desirable to retain the
source audio, especialy if it contains narration or other informa-
tion. In this case, it is a straightforward matter to mix the existing
video sound with the chosen soundtrack music, although it may
have arbitrarily truncated edit boundaries. To avoid the arbitrary
truncation, one can attempt to find sentence boundaries by finding
long enough passages of silence. Video clips can then start and end
a a sentence boundary.

Using automatic gain control, the soundtrack music can be
“ducked” so that it is quieter when there is speech or dialog in the



original video soundtrack. Thus the music is primarily heard when
people are not speaking, and can cover background noise and other
imperfections. Conversely, noisy audio from the camcorder micro-
phone can be gain-expanded or noise-gated such that low-level
noiseis effectively muted.

Iterative Semi-automatic Music Video Construction

We are also working on an iterative semi-automatic approach to
building the music videos. Given a new source video and separate
audio file, the system will automatically perform the audio and
video analysis, and output the most suitable video to the story-
board window of the Hitchcock user interface. At this point the
user can reorder clips, replace them with other clips from the raw
video, or lock particular clip boundaries. The process can be
repeated until asatisfactory video is produced. This general frame-
work may provide a ssimple and lightweight means by which users
can efficiently construct music videos.

8. CONCLUSION

We have presented a music video creation system that can auto-
matically select and align video segments to music. Becauseiit pro-
duces multimedia output, we can only present static
representations of the algorithm in this paper. We have included an
example video produced by our approach in this submission for
interested readersto view, at the URL given above. Informal judge-
ments and user reactions show that our method produces convinc-
ing music videos. Each music video is comprised of the high
quality portions of the clips from the source video. The video clip
boundaries are aligned with musical transitions, such as soft/loud
or verse/chorus changes in the soundtrack audio.

Drag-and-drop clip selection and ordering when combined with
automatic music analysis substantially simplifies music video cre-
ation. Thisis important as more and more people start to use PCs
to edit heir growing collections of raw video. Preliminary studies
indicate that users find it easy to interact with the system and to
create music videos [7]. At the same time, the study uncovered
areas where we can improve the system'’s usability and functional-
ity. For example, the source audio from the DV should play a sig-
nificant role in determining clip boundaries. Future work will
address this shortcoming and integrate additional features.
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