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ABSTRACT

We introduce the beat spectrum, a new method of automatically
characterizing the rhythm and tempo of music and audio. The
beat spectrum is a measure of acoustic self-similarity as a func-
tion of time lag. Highly structured or repetitive music will have
strong beat spectrum peaks at the repetition times. This reveals
both tempo and the relative strength of particular beats, and there-
fore can distinguish between different kinds of rhythms at the
same tempo. We also introduce the beat spectrogram which
graphically illustrates rhythm variation over time. Unlike previ-
ous approaches to tempo analysis, the beat spectrum does not
depend on particular attributes such as energy or frequency, and
thus will work for any music or audio in any genre. We present
tempo estimation results which are accurate to within 1% for a
variety of musical genres. This approach has a variety of applica-
tions, including music retrieval by similarity and automatically
generating music videos.

1. INTRODUCTION

Anyone who has ever tapped a foot in time to music has per-
formed rhythm analysis. Though simple for humans, this task is
considerably more difficult to automate. We introduce a new mea-
sure of tempo analysis called the beat spectrum. This is a measure
of acoustic self-similarity versus lag time, computed from a repre-
sentation of spectrally similarity. Peaks in the beat spectrum cor-
respond to major rhythmic components of the source audio. The
repetition time of each component can be determined by the lag
time of the corresponding peak, while the relative amplitudes of
different peaks reflects the strengths of their corresponding rhyth-
mic components. We also present the beat spectrogram which
graphically illustrates rhythmic variation over time. The beat
spectrogram is an image formed from the beat spectrum over suc-
cessive windows. Strong rhythmic components are visible as
bright bars in the beat spectrogram, making changes in tempo or
time signature visible. In addition, a measure of audio novelty can
be computed that measures how novel the source audio is at any
time [2]. Instances when this measure is large correspond to sig-
nificant audio changes. Periodic peaks correspond to rhythmic
periodicity in the music. In the final section, we present various
applications of the beat spectrum, including music retrieval by
rhythmic similarity, an “automatic DJ” that can smoothly
sequence music with similar tempos and automatic music video
generation.

2. PREVIOUS WORK

It is straightforward to segment audio that has significant inter-
segment silence. This simple approach is used in many commer-
cial audio processing software. Much interesting audio does not
contain significant silence, however, including most popular
music. Several groups have reported work on musical beat-track-
ing and analysis. A successful approach uses correlated energy
peaks across frequency sub-bands [3]. Another approach depends
on assumptions such as the music must be in 4/4 time and have a
bass drum on the downbeat [4]. A novel approach is to compute
rhythmic similarity for a search application [1]. Here, a “bass
loudness time-series” is generated by weighting the short-time
Fourier transform (STFT) to favor low frequencies. A peak in the
Fourier analysis of this time series is chosen as the “fundamental”
period. The Fourier result is normalized and quantized into dura-
tions of 1/6 of a beat, so that both duplet and triplet subdivisions
can be represented. This serves as a feature vector for rhythmic
similarity comparison. This approach works well for drum pat-
terns, but is likely to be confused by music with significant bass
energy not due to drums. In contrast, the approach presented here
has the advantage that it does not rely on particular features such
as silence, periodic energy peaks, or specific time signatures.
Because it is based on self-similarity, the only required features
are repetitive events (even silence) in the source audio. 

3. THE ALGORITHM

The beat spectrum is calculated from the audio using three princi-
pal steps. First, the audio is parametrized using a spectral or other
representation. This results in a sequence of feature vectors. Sec-
ond, a distance measure is used to calculate the similarity between
all pairwise combinations of feature vectors, hence times in the
audio. This is embedded into a two-dimensional representation
called a similarity matrix. The beat spectrum results from finding
periodicities in the similarity matrix, using diagonal sums or auto-
correlation. The following sections present each step in more
detail.

3.1 Audio parameterization

The methods presented here are all based on the distance matrix,
which is a two-dimensional embedding of the audio self-similar-
ity [6]. The first step is to parameterize the audio. This is typically
done by windowing the audio waveform. Various window widths
and overlaps can be used; in the present system windows
(“frames”) are 256 samples wide, and are overlapped by 128
points. For audio sampled at 22kHz, this results in a 11 ms frame
width. A fast Fourier transform is performed on each frame, and
the logarithm of the magnitude of the result estimates the power



spectrum. The result is a compact vector of parameters that char-
acterizes the spectral content of the frame. Many compression
techniques such as MPEG-1 Layer 3 use a similar spectral repre-
sentation, which could be used for a distance measure. Other
parameterizations could be used, including those based on linear
prediction, Mel-Frequency Cepstral Coefficient (MFCC) analysis
[7], or psychoacoustic considerations.

3.2 Calculating frame similarity

Once the audio has been parameterized, it is then embedded in a
2-dimensional representation. A (dis)similarity measure D
between feature vectors  and  is calculated from audio
frames i and j. A simple distance measure is the Euclidean dis-
tance in the parameter space. To remove the dependence on mag-
nitude (and hence energy, given our features), the product can be
normalized to give the cosine of the angle between the parameter
vectors.

The cosine measure ensures that windows with low energy, such
as those containing silence, can still yield a large similarity score,
which is generally desirable. This is the distance measure used
here. 

3.3 Distance Matrix Embedding

It is convenient to consider the similarity between all possible
instants in a signal. This is done by embedding the distance mea-
sure in a two-dimensional representation. The similarity matrix S
contains the distance metric calculated for all frame combinations
(hence time indexes i and j) such that the i, jth element of S is
D(i, j). S can be visualized as a square image where each pixel i, j
is given a gray scale value proportional to the similarity measure

D(i,j), and scaled such that the maximum value is given the maxi-
mum brightness. These visualizations let us clearly see the struc-
ture of an audio file. Regions of high audio similarity, such as
silence or long sustained notes, appear as bright squares on the
diagonal. Repeated figures will be visible as bright off-diagonal
rectangles. If the music has a high degree of repetition, this will
be visible as diagonal stripes or checkerboards, offset from the
main diagonal by the repetition time.

Figure 1 shows the first seconds of Bach’s Prelude No. 1 in C
Major, from The Well-Tempered Clavier, BVW 846. (In these
visualizations, image rather than matrix coordinate conventions
are used, thus the origin is at the lower left and time increases
both with height and to the right.) The figure depicts a 1963 piano
performance by Glenn Gould. 34 notes can be seen as squares
along the diagonal. The repetition time is visible in the off-diago-
nal stripes parallel to the main diagonal, as well as the repeated C
note at 0, 2, 4, and 6 seconds. Despite Gould’s typically idiosyn-
cratic performance, the music has a strong periodicity, indicated
by the spectral peak at about 2 seconds, which corresponds to the
length of an 8-note phrase.

3.4 Deriving the beat spectrum

Both the periodicity and relative strength of rhythmic structure
can be derived from the similarity matrix. We call a measure of
self-similarity as a function of the lag the beat spectrum B(l).
Peaks in the beat spectrum correspond to repetitions in the audio.
A simple estimate of the beat spectrum can be found by summing
S along the diagonal as follows:

Here, B(0) is simply the sum along the main diagonal over some
continuous range R, B(1) is the sum along the first superdiagonal,
and so forth. Figure 2 shows an example computed for a range of
3 seconds in the Gould performance. The periodicity of each note
can be clearly seen, as well as the strong 8-note periodicity of the
phrase at about 2 seconds. Notice the peaks at notes 3 and 5, due
to the three-note periodicity of the eight-note phrase. In each
phrase, notes 3 and 6, notes 4 and 7, and notes 5 and 8 are the
same.

Figure 1. Similarity matrices for Bach’s Prelude No. 1 in C Major,
BVW 846. Performance: Glenn Gould.
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Figure 2. Beat spectrum of Gould Prelude from diagonal sum
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A more robust estimate of the beat spectrum comes from the auto-
correlation of S: 

Because B(k,l) is symmetric, it is only necessary to sum over one
variable, giving the one-dimensional result B(l). This approach
works surprisingly well across a range of musical genres, tempos,
and rhythmic structures. Figure 3 shows the beat spectrum com-
puted from the first 10 seconds of the jazz composition Take 5 by
the Dave Brubeck Quartet. Besides being in the unusual 5/4 time
signature, this rhythmically sophisticated piece requires some
interpretation. The most visible feature is the beat spectral peak at
5 beats, and a corresponding sub-harmonic at 10. Note that quar-
ter-note beats (annotated with solid vertical lines in the figure) are
not the major peaks. Jazz aficionados know that “swing” is the
subdivision of beats into non-equal periods rather than “straight”
(equal) eighth-notes. The beat spectrum clearly shows that each
beat is subdivided into a triplet. This is indicated with dotted lines
spaced 1/3 of a beat apart between the second and third beats.

4. THE BEAT SPECTROGRAM

Just as the power spectrum discards phase information, the beat
spectrum discards absolute timing information. We introduce the
beat spectrogram for analyzing rhythmic variation over time. The
spectrogram visualized the spectral evolution across successive
windows. Likewise, the beat spectrogram visualizes the beat
spectrum over successive windows to show rhythmic variation
over time. The beat spectrogram is an image formed by succes-
sive beat spectra. Time is on the x axis, with lag time on the y
axis. Each pixel in the beat spectrograph is colored with the
scaled value of the beat spectrum at that time and lag, so that beat
spectrum peaks are visible as bright bars in the beat spectrogram.
The beat spectrograph shows how tempo varies over time. For
example, an accelerating rhythm will be visible as bright bars that
slope downward, as the lag time between beats decreases with
time. 

The beat spectrum has interesting parallels with the frequency
spectrum. Firstly, there is an inverse relation between the time
accuracy and the beat spectral precision. This is because you need
more periods of a repetitive signal to more precisely estimate its
frequency. The longer the summation range, the better the beat
accuracy, but of course the worse the temporal accuracy. (Techni-
cally, the beat spectrum is a frequency operator, and therefore
does not commute with a time operator.) In particular, if the
tempo changes over the analysis window, it will “smear” the beat
spectrum. Analogously, changing a signal’s frequency over the
analysis window will result in a smeared frequency spectrum.
Thus beat spectral analysis, just like frequency analysis, is a
trade-off between spectral and temporal resolution.

Figure 4 shows the beat spectrogram of a 33-second excerpt of the
Pink Floyd song Money. Listeners familiar with this classic-rock
chestnut may know the song is primarily in the 7/4 time signa-
ture1, save for the bridge (middle section), which is a more com-
mon blues progression in 4/4. The excerpt shown starts
approximately four minutes and 55 seconds into the song, just
before the transition from the 4/4 bridge back into the last 7/4
verse. This transition is clearly visible. On the left, there are
strong beat spectral peaks (indicated by white numbers) on each
beat, and particularly at two beats (the “backbeats” 2 and 4), four
beats (the length of a 4/4 bar), and an eight-beat subharmonic.
Two beats occur in slightly less than a second, corresponding to a
tempo slightly faster than 120 beats per minute (120 MM). This is
followed by a short two-bar transition, still in 4/4. Then the time
signature changes to 7/4, which is clearly visible as a strong
seven-beat peak with the absence of a four-beat component. Note
also there is a slight deccelerando (tempo slowing) into the transi-
tion, as can be seen by the 4-beat peak curving upward slightly.
The last verse is slightly slower than the bridge, so the large
seven-beat peak is slightly higher (takes longer time) than the cor-
responding seven-beat peak in the bridge.
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Figure 3. Beat spectrum of jazz composition Take 5

1Meaning that each measure consists of seven quarter-note beats. 
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5. ONSET DETECTION

Since many applications of beat tracking require an estimate of
not only how often but when a beat occurs, we use an onset detec-
tor to precisely locate rhythmic events in time. Onset times can be
derived from the similarity matrix S using a classic matched-filter
techniques: correlating S with a kernel that itself looks like a
checkerboard, as in [2]. Peaks in the beat spectrum give the fun-
damental rhythmic periodicity, while peaks in the correlation give
the precise downbeat time or phase. Correlating the novelty score
with a comb-like function with a period from the beat spectrum
yields a signal that has strong peaks at every beat.

6. EVALUATION

Benchmarking is not straightforward, as a “beat” is somewhat
arbitrary and genre-dependent. Different listeners might charac-
terize the same rhythm as having either 8 eighth-note beats or 4
quarter notes, and thus misjudge the tempo by a factor of two. To
test the accuracy of the beat spectral method, musical segments of
different popular genres were extracted from the video “Musica
Si” from the MPEG-7 content set [9]. Segments lasted 10 sec-
onds, and are labeled segMMSS, where MMSS are the minutes
and seconds of the segment start time in the video. The tempo was
estimated by the simple heuristic of picking the highest peak in
the beat spectrum having a lag of greater than 1/6 second. For a
ground truth tempo, durations of 4- or 8-beat phrases was manu-
ally measured. Table 1 shows the results. For each segment, the
third column shows the beat spectral peak (BSP): the lag of the
highest peak greater than 1/6 s. (The exception was seg1100 where
the simplistic peak-picking failed; however the peak was obvious
by inspection.) The fourth column shows the measured time for a
4- or 8-beat phrase. The last column shows the ratio between the
estimated and measured beat: the closer this is to an integral ratio,
the more accurate the BSP tempo estimate. Like many listeners,
the BSP may misjudge the dominant tempo as an integral factor
of the fundamental period. Accounting for this, the BSP tempo
estimates are correct to within 1% of the measured value, even
though they are only accurate to within one analysis window,
roughly 1/100 s. Note that the largest source of measurement error
here is the manual segmentation and probably not the BSP.

7. APPLICATIONS

The ability to reliably segment and beat-track audio has a large
number of useful applications. Note that this approach can be
used for any time-dependent media, such as video, where some
measure of point-to-point similarity can be determined. 

Determining rhythmic similarity

Rhythmically similar music will have similar beat spectra. A
measure of similarity could be computed by comparing the beat
spectra. Among other applications, this allows retrieval by rhyth-
mic similarity: a collection of music could be ranked by similarity
to a given musical example. The beat spectra could be normalized
by tempo period so that rhythmic similarity can be compared
independently of tempo, as in [1]. Another application might be to
arrange songs by similar tempo and rhythm so that the transition
between them is smooth. 

Music segmentation by rhythm

Songs can be segmented by clustering the beat spectrogram. For
example, the Pink Floyd song of Figure 4 could be segmented
into 4/4 and 7/4 regions, corresponding to the bridge and verses of
the song structure. 

Automatic tempo extraction

Knowing the song structure, tempo, and beat times allows syn-
chronization of external events to the audio. For example, an ani-
mated character could nod or dance to the musical tempo. Video
clips could be automatically sequenced to match the tempo of an
chosen musical soundtrack.
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Track Genre BSP (s) time (s) / beats ratio

seg0005 theme intro 0.551 2.185 / 4 1.009

seg0028 theme + vox 1.097 4.333 / 8 2.025

seg0139 dance/hip-hop 1.056 2.099 / 4 2.012

seg0531 pop/rock chorus 0.313 4.963 / 8 0.505

seg0602 pop/rock verse 0.621 4.926 / 8 1.009

seg1110 vox/guitar 1.01* 4.070 / 8 1.985

seg1405 R&B vox 0.319 5.065 / 8 0.504

seg1455 dance/vox 1.027 4.091 / 8 2.008

Table 1. Results of tempo analysis estimation
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