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ABSTRACT

Recent work has veri�ed that the second�formant frequency
�F�� and its change in the vowel immediately preceding
a stop consonant are usually su�cient to discriminate be�
tween labial� palatal� and alveolar stops� even in the absence
of the stop burst information� Informal listening tests using
truncated samples indicate that humans can discriminate
the three stops on the basis of the preceding vowel alone�
Typical quasi�stationary analyses like LPC and DFT �l�
terbanks may not have su�cient time�frequency resolution
to detect the rapid F� variations� and therefore a valuable
source of stop classi�cation information is being overlooked�
This paper shows the results of using the DESA�� quadratic
frequency estimator to determine the frequency and rate of
change of F�� It is shown for di	erent vowel environments
that the DESA�� algorithm can extract su�cient informa�
tion to classify stops from vocalic data� The performance
is demonstrated to be superior to a formant tracker using a
more conventional pitch�synchronous LPC analysis�

�� THE DESA�� ALGORITHM

The Discrete Energy Separation Algorithm �DESA��� re�
cently presented by Maragos� Kaiser� and Quatieri 
�� ��
is based on the work of H� Teager� The DESA�� algorithm
provides a simple and elegant method of estimating the am�
plitude and frequency of a sinusoid subject to amplitude or
frequency modulation� Using the notation of 
��� the Teager
energy�tracking operator is de�ned as
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where �x�t� and �x�t� are the �rst and second time derivatives
of x�t�� Given a sinusoid with amplitude modulation a�t�
and instantaneous frequency ��t��
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the Teager energy operator estimates the squared product of
the instantaneous amplitude and frequency� under certain
reasonable conditions �essentially� modulation frequencies
must be slow with respect to the carrier��
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Applying the operator to the derivative of the AM�FM sig�
nal yields
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Clearly� the instantaneous amplitude and frequency may be
found from the Teager energy estimates of the signal and
its derivative by solving Equations ��� and ��� for a and ��
In the discrete case� time derivatives may be approxi�

mated by time di	erences� The discrete�time counterpart
of the Teager operator �c
x�t�� becomes�
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A discrete�time AM�FM sinusoidal signal having ampli�
tude modulation a�n�� carrier frequency �c� modulation fre�
quency �m� and modulation function q�n�� can be expressed
as �ignoring an arbitrary phase constant�
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and has instantaneous frequency �i�n�
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It has been shown 
�� that the discrete�time Teager energy
operator estimates the following function of the instanta�
neous amplitude and frequency�

�d
x�n�� � a
��n� sin���i�n�� ���

again under the reasonable assumptions that the modula�
tion functions are slowly varying with respect to the carrier
frequency �c�
Because the forward and backward di	erences are not

symmetric� a symmetric approximation to the operative of
the derivative of ��� may be found by averaging the opera�
tive results of the backward di	erence y�n� 
 x�n��x�n���
and the forward di	erence z�n� 
 x�n� ��� x�n�� In this
case�
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�again as shown in 
���� The DESA�� algorithm yields an
estimate of the instantaneous amplitude and frequency by
solving Eqs� ��� and ��� for a�n� and �i�n� as follows�
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Figure �� Frequency estimation block diagram
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Figure �� Frequency artifacts at pitch period boundaries

�� USING DESA�� FOR FORMANT
TRACKING

Real speech data� of course� is more complex than the sim�
ple AM�FM sinusoids of the previous section� However� the
AM�FM signal is still a reasonable model for individual for�
mants� which may be isolated by appropriately �ltering the
speech signal� Unfortunately� straightforward application of
the DESA�� algorithm is problematic because interactions
between the �lter and neighboring pitch periods causes un�
desirable artifacts in the frequency estimates�
Towards the end of a pitch period� when the glottal en�

ergy is mostly dissipated� the �lter starts to overlap the
start of the next glottal impulse� The �ltered signal is
in the right frequency range� but is usually not in phase
with the current pitch period� Figure � illustrates this phe�
nomenon� The bandpass��ltered speech signal has pitch pe�
riod boundaries near � and �� milliseconds� The frequency
is roughly constant across the pitch periods� but there are
phase discontinuities at the boundaries� which give rise to
the frequency estimate spikes�

���� Pitch Period Detection

At �rst glance� it would seem that merely ignoring the
pitch boundary regions would be su�cient to reduce the
frequency artifacts� but variable pitch energy� especially
when approaching a stop� means that artifacts can occur
anywhere in the pitch period� not just in the low�energy

pitch�boundary regions of Figure �� This problem may be
overcome by processing pitch periods in isolation�
Fortunately� the formant�tracking algorithm does not re�

quire the precise glottal�closure instant detection of 
���
Rough pitch�period boundaries were detected by bandpass
�ltering the speech signal in the �rst formant frequency
range� Regions with a smoothed Teager energy of greater
than ���� of the mean energy were regarded as valid pitch
intervals for further processing� The Teager energy was used
rather than the squared�signal energy because it is more
likely to be small at the problematic pitch period bound�
aries� This is because the Teager energy� being proportional
to the square of the frequency as well as the amplitude� is
larger at the beginning of the pitch period when there are
more high�frequency components from the glottal function�

���� Pitch�Synchronous Formant Tracking

Once isolated� the pitch interval was tapered with a Han�
ning �raised cosine� window of the same length to reduce
truncation e	ects� The tapered data were zero�padded and
fed into a �lterbank of four bandpass �lters� Depending on
the vowel environment� the �lters spanned the frequency
range ��������� Hz �the �rst experiment below� or the
range ��������� Hz for the vowel ���� Each �lterbank sec�
tion consisted of a ����point optimal FIR �lter having a ���
Hz passband width� adjacent �lters overlapped by ��� Hz�
DESA�� analysis was then performed on each �lter out�

put� which resulted in a time�varying frequency and am�
plitude estimate for the duration of the pitch period� To
�nd the general region of the second formant� the ampli�
tude estimates were summed for each frequency range� The
DESA�� frequency estimate from the �lter with maximum
summed amplitude was chosen as a good estimate of F�
over the pitch period� The relatively long �lter serves to
smooth the frequency estimate� so no additional smoothing
�like the median �lter of 
��� is required� Note that it is not
necessary to compute the DESA�� analysis for every �lter�
bank output� in time�critical applications� a simpler energy
estimate could certainly be used� In studies of consonant�
vowel transitions 
��� it was found that formant trajectories
are well�approximated by straight lines� The rate of change
of F� is thus determined by the slope of the LMS best lin�
ear �t to the F� estimates over the last few pitch periods
approaching a stop�

�� EXPERIMENTS

It has long been known that the formant transitions be�
tween vowels and stops are important cues to the place of
stop articulation� 
�� �� �� ��� Informal listening tests 
��� in�
dicate that humans can discriminate between the unvoiced
stop consonants �p�� �t� and �k� on the basis of the preced�
ing vowel alone� Given recorded speech data of  pupper!�

�



0 10 20 30 40 50 60
800

900

1000

1100

1200

1300

1400

1500

Time (ms)

F2
 (

H
z)

0 10 20 30 40 50 60
800

900

1000

1100

1200

1300

1400

1500

Time (ms)

F2
 (

H
z)

0 10 20 30 40 50 60
800

900

1000

1100

1200

1300

1400

1500

Time (ms)

F2
 (

H
z)

Figure �� Estimated F� and best linear��t slope in vowel before P �left	
 T �center	
 and K �right	�

 putter�! and  pucker�! untrained listeners were played the
initial  puh! and asked to judge whether the �unheard� stop
was a �p�� �t� or �k�� The subjects chose the correct stop
with better than ��� accuracy� indicating that coarticula�
tion e	ects in the preceding vowel give valuable information
about the stop�

Three instances of the pseudo�words  upper�!  utter�!
and  ucker! spoken by �� male talkers were sampled at
�� kHz� Talkers were instructed not to "ap the �t�� i� e�
 udder! was not permitted for  utter�! The vowels before
the unvoiced stop consonants �p�� �t� and �k� were auto�
matically extracted and served as the corpus for the �rst
experiment� When examined over the last four pitch peri�
ods before the stop� the frequency and slope of F� are good
indicators of the stop type� Figure � shows the results of the
F� estimation procedure on the vowel � e� before the stops
�p�� �t� and �k�� Labial stops ��p�� are characterized by
a relatively low mean F� frequency with a "at or negative
formant slope� alveolar stops ��t�� have a high F� frequency
and a large positive slope� while palatal stops ��k�� have an
intermediate frequency with slightly positive slope� Figure
� shows the mean F� value plotted against the F� slope for
the last four pitch periods� The di	erent stops are reason�
ably well�clustered� Note that the distinctive slope occurs
in less than �� milliseconds� which is about the window
length used in typical speech recognition systems� Clearly�
long analysis windows may obscure important time�varying
information�

To compare with conventional techniques� the same
isolated�pitch data were used in an LPC�based formant
tracker� The speech data were �rst lowpass �ltered to ����
Hz� using a zero�phase FIR �lter to preserve time alignment�
An ��pole� autocorrelation LPC analysis was performed on
the tapered pitch intervals determined as in the DESA��
experiment� The second formant was considered to be the
pole frequency of the largest�magnitude pole pair found be�
tween ���� and ���� Hz� If no poles were found� pairs
between ���� and ���� Hz were considered� Figure � shows
the mean F� of the last four pitch periods plotted against
the slope of the best LMS linear �t to the pitch�synchronous
LPC F� estimate� while Figure � shows the feature values
determined by the DESA�� method� The di	erence is clear�
the DESA�� estimates are reasonably clustered and classi�
�cation could be performed� while the LPC method does
not discriminate well between the classes and su	ers from
particularly poor slope estimates �note the di	erent Y�axis
scales between the two �gures��

�� DISCUSSION

Interpretation of these results is aided by numerous studies
of consonant�vowel formant transitions in the literature� It
is generally agreed that lip�rounding causes F� to drop� be�
cause it is acoustically equivalent to increasing the length
of the resonant cavity 
���� This agrees with the the slightly
negative F� slope seen for labial stops� and results reported
elsewhere 
�� ��� The situation for alveolar and palatal stops
is not as straightforward� From perceptual studies using
synthetic speech 
��� it has been hypothesized that alveo�
lar stops have a  locus! near ���� Hz� That is� F� will
move from the steady�state vowel location to somewhere
near ���� Hz in the stop� This is consistent with the dis�
tinctly positive slopes found here� However� there is some
controversy whether invariant  loci! really exist in natural
speech� especially as most of the studies involved only a
single talker and did not investigate inter�talker variations�

Preliminary studies in other vowel environments indicate
that similar cues are present� though they may not be as
distinct� Figure � shows the that reasonable discrimina�
tion was obtained for one talker in the vowel environment
 apesh�!  atesh�! and  ackesh�! �initial vowel ���� as in
 had!�� A similar experiment across �� talkers revealed
much poorer separation than the previous  upper!� utter!�
 ucker! environment� especially in the slope dimension� It
has been hypothesized that F� of ��� is quite near the re�
ported  locus! of alveolar stops� thus slopes are smaller in
magnitude and may be variable due to natural inter�speaker
variations� For instance� if a talker has a naturally high F��
the slope for an alveolar stop may be negative� and thus re�
semble a labial stop� Work is underway in extracting cues
that are invariant across vowel environments�

�� SUMMARY

The DESA�� algorithm is a computationally simple and ro�
bust way of detecting rapid formant variations� The re�
sults presented here demonstrate the advantage of nonlin�
ear� nonstationary analysis over conventional techniques�
The DESA�� method yields results comparable to the time�
varying LPC method of 
��� and can e	ectively extract stop
classi�cation information for speech recognition applica�
tions� In addition� the DESA�� method avoids the iterative
estimation procedures of 
��� and is computationally simple
enough to be performed in real time�

�
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Fig� �� F� slope vs� F�
 �� talkers
 DESA�� results� Fig� 
� F� slope vs� F�
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