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ABSTRACT

Recent work has verified that the second-formant frequency
(F2) and its change in the vowel immediately preceding
a stop consonant are usually sufficient to discriminate be-
tween labial, palatal, and alveolar stops, even in the absence
of the stop burst information. Informal listening tests using
truncated samples indicate that humans can discriminate
the three stops on the basis of the preceding vowel alone.
Typical quasi-stationary analyses like LPC and DFT fil-
terbanks may not have sufficient time-frequency resolution
to detect the rapid F2 variations, and therefore a valuable
source of stop classification information is being overlooked.
This paper shows the results of using the DESA-1 quadratic
frequency estimator to determine the frequency and rate of
change of F2. It is shown for different vowel environments
that the DESA-1 algorithm can extract sufficient informa-
tion to classify stops from vocalic data. The performance
is demonstrated to be superior to a formant tracker using a
more conventional pitch-synchronous LPC analysis.

1. THE DESA-1 ALGORITHM

The Discrete Energy Separation Algorithm (DESA-1) re-
cently presented by Maragos, Kaiser, and Quatieri [1, 2]
is based on the work of H. Teager. The DESA-1 algorithm
provides a simple and elegant method of estimating the am-
plitude and frequency of a sinusoid subject to amplitude or
frequency modulation. Using the notation of [2], the Teager
energy-tracking operator is defined as

T [x(B)] 2 #2(t) — a(1)it) (1)

where #(t) and Z(t) are the first and second time derivatives
of x(t). Given a sinusoid with amplitude modulation a(t)
and instantaneous frequency w(?),

z(t) = a(t) cos(/w(r)dr) (2)

the Teager energy operator estimates the squared product of
the instantaneous amplitude and frequency, under certain
reasonable conditions (essentially, modulation frequencies
must be slow with respect to the carrier).

U [2(t)] & a® (t)w (2) (3)
Applying the operator to the derivative of the AM-FM sig-

nal yields

T [i(t)] = o () (1). (4)
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Clearly, the instantaneous amplitude and frequency may be
found from the Teager energy estimates of the signal and
its derivative by solving Equations (3) and (4) for a and w.

In the discrete case, time derivatives may be approxi-
mated by time differences. The discrete-time counterpart
of the Teager operator ¥ [z(¢)] becomes:

U q[z(n)) 2 22 (n) —x(n — Da(n+1) (5)

A discrete-time AM-FM sinusoidal signal having ampli-
tude modulation a(n), carrier frequency 2., modulation fre-
quency €, and modulation function ¢(n), can be expressed
as (ignoring an arbitrary phase constant)

“n

x(n) = a(n)cos(d(n)) = a(n) cos(an—I—Qm,/ q(k)dk) (6)

0
and has instantaneous frequency Q;(n)

do(n)
dn

Qi(n) = = Q.+ Qug(n) (7)
It has been shown [3] that the discrete-time Teager energy
operator estimates the following function of the instanta-
neous amplitude and frequency:

Ty[z(n)] & a®(n)sin®(Qi(n)) (8)

again under the reasonable assumptions that the modula-
tion functions are slowly varying with respect to the carrier
frequency €.

Because the forward and backward differences are not
symmetric, a symmetric approximation to the operative of
the derivative of (6) may be found by averaging the opera-
tive results of the backward difference y(n) = z(n)—x(n—1)
and the forward difference z(n) = z(n + 1) — z(n). In this
case,

Qi(n)
2

%(\I/[y(n)] + U[z(n)]) = 4a’(n) sin’| ]sin’[Qi(n)] (9)
(again as shown in [3]). The DESA-1 algorithm yields an
estimate of the instantaneous amplitude and frequency by

solving Egs. (8) and (9) for a(n) and Q;(n) as follows:

Gy 2 1- \P[y(z\)ll[:(j)[f(n)] (10)
Qi(n) = cos '[G(n)) (11)
ol = (12
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Figure 1: Frequency estimation block diagram
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Figure 2: Frequency artifacts at pitch period boundaries
2. USING DESA-1 FOR FORMANT
TRACKING

Real speech data, of course, is more complex than the sim-
ple AM-FM sinusoids of the previous section. However, the

AM-FM signal is still a reasonable model for individual for-
mants, which may be isolated by appropriately filtering the
speech signal. Unfortunately, straightforward application of
the DESA-1 algorithm is problematic because interactions
between the filter and neighboring pitch periods causes un-
desirable artifacts in the frequency estimates.

Towards the end of a pitch period, when the glottal en-
ergy is mostly dissipated, the filter starts to overlap the
start of the nest glottal impulse. The filtered signal is
in the right frequency range, but is usually not in phase
with the current pitch period. Figure 2 illustrates this phe-
nomenon. The bandpass-filtered speech signal has pitch pe-
riod boundaries near 5 and 14 milliseconds. The frequency
is roughly constant across the pitch periods, but there are
phase discontinuities at the boundaries, which give rise to
the frequency estimate spikes.

2.1. Pitch Period Detection

At first glance, it would seem that merely ignoring the
pitch boundary regions would be sufficient to reduce the
frequency artifacts, but variable pitch energy, especially
when approaching a stop, means that artifacts can occur
anywhere in the pitch period, not just in the low-energy

pitch-boundary regions of Figure 2. This problem may be
overcome by processing pitch periods in isolation.
Fortunately, the formant-tracking algorithm does not re-
quire the precise glottal-closure instant detection of [4].
Rough pitch-period boundaries were detected by bandpass
filtering the speech signal in the first formant frequency
range. Regions with a smoothed Teager energy of greater
than 130% of the mean energy were regarded as valid pitch
intervals for further processing. The Teager energy was used
rather than the squared-signal energy because it is more
likely to be small at the problematic pitch period bound-
aries. This is because the Teager energy, being proportional
to the square of the frequency as well as the amplitude, is
larger at the beginning of the pitch period when there are
more high-frequency components from the glottal function.

2.2.

Once isolated, the pitch interval was tapered with a Han-
ning (raised cosine) window of the same length to reduce
truncation effects. The tapered data were zero-padded and
fed into a filterbank of four bandpass filters. Depending on
the vowel environment, the filters spanned the frequency
range 1100 1600 Hz (the first experiment below) or the
range 1400-2000 Hz for the vowel /ze/. Each filterbank sec-
tion consisted of a 257-point optimal FIR filter having a 200
Hz passband width; adjacent filters overlapped by 100 Hz.

DESA-1 analysis was then performed on each filter out-
put, which resulted in a time-varying frequency and am-
plitude estimate for the duration of the pitch period. To
find the general region of the second formant, the ampli-
tude estimates were summed for each frequency range. The
DESA-1 frequency estimate from the filter with maximum
summed amplitude was chosen as a good estimate of F2
over the pitch period. The relatively long filter serves to
smooth the frequency estimate, so no additional smoothing
(like the median filter of [2]) is required. Note that it is not
necessary to compute the DESA-1 analysis for every filter-
bank output: in time-critical applications, a simpler energy
estimate could certainly be used. In studies of consonant-
vowel transitions [5], it was found that formant trajectories
are well-approximated by straight lines. The rate of change
of F2 is thus determined by the slope of the LMS best lin-
ear fit to the F2 estimates over the last few pitch periods
approaching a stop.

Pitch-Synchronous Formant Tracking

3. EXPERIMENTS

It has long been known that the formant transitions be-
tween vowels and stops are important cues to the place of
stop articulation. [6, 7, 8, 9]. Informal listening tests [10] in-
dicate that humans can discriminate between the unvoiced
stop consonants /p/, /t/ and /k/ on the basis of the preced-
ing vowel alone. Given recorded speech data of “pupper”,
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Figure 3: Estimated F2 and best linear-fit slope in vowel before P (left), T (center), and K (right).

“putter,” and “pucker,” untrained listeners were played the
initial “puh” and asked to judge whether the (unheard) stop
was a /p/, [t/ or /k/. The subjects chose the correct stop
with better than 80% accuracy, indicating that coarticula-
tion effects in the preceding vowel give valuable information
about the stop.

Three instances of the pseudo-words “upper,” “utter,”
and “ucker” spoken by 20 male talkers were sampled at
16 kHz. Talkers were instructed not to flap the /t/, 1. e.
“udder” was not permitted for “utter.” The vowels before
the unvoiced stop consonants /p/, /t/ and /k/ were auto-
matically extracted and served as the corpus for the first
experiment. When examined over the last four pitch peri-
ods before the stop, the frequency and slope of F2 are good
indicators of the stop type. Figure 3 shows the results of the
F2 estimation procedure on the vowel /g/ before the stops
/p/, /t/ and /k/. Labial stops (/p/) are characterized by
a relatively low mean F2 frequency with a flat or negative
formant slope, alveolar stops (/t/) have a high F2 frequency
and a large positive slope, while palatal stops (/k/) have an
intermediate frequency with slightly positive slope. Figure
4 shows the mean F2 value plotted against the F2 slope for
the last four pitch periods. The different stops are reason-
ably well-clustered. Note that the distinctive slope occurs
in less than 40 milliseconds, which is about the window
length used in typical speech recognition systems. Clearly,
long analysis windows may obscure important time-varying
information.

To compare with conventional techniques, the same
isolated-pitch data were used in an LPC-based formant
tracker. The speech data were first lowpass filtered to 3200
Hz, using a zero-phase FIR filter to preserve time alignment.
An 8-pole, autocorrelation LPC analysis was performed on
the tapered pitch intervals determined as in the DESA-1
experiment. The second formant was considered to be the
pole frequency of the largest-magnitude pole pair found be-
tween 1100 and 1600 Hz. If no poles were found, pairs
between 1000 and 2000 Hz were considered. Figure 5 shows
the mean F2 of the last four pitch periods plotted against
the slope of the best LMS linear fit to the pitch-synchronous
LPC F2 estimate, while Figure 4 shows the feature values
determined by the DESA-1 method. The difference is clear:
the DESA-1 estimates are reasonably clustered and classi-
fication could be performed, while the LPC method does
not discriminate well between the classes and suffers from
particularly poor slope estimates (note the different Y—axis
scales between the two figures).

4. DISCUSSION

Interpretation of these results is aided by numerous studies
of consonant-vowel formant transitions in the literature. It
is generally agreed that lip-rounding causes F2 to drop, be-
cause it is acoustically equivalent to increasing the length
of the resonant cavity [11]. This agrees with the the slightly
negative F2 slope seen for labial stops, and results reported
elsewhere [7, 5]. The situation for alveolar and palatal stops
is not as straightforward. From perceptual studies using
synthetic speech [6], it has been hypothesized that alveo-
lar stops have a “locus” near 1800 Hz. That is, F2 will
move from the steady-state vowel location to somewhere
near 1800 Hz in the stop. This is consistent with the dis-
tinctly positive slopes found here. However, there is some
controversy whether invariant “loci” really exist in natural
speech, especially as most of the studies involved only a
single talker and did not investigate inter-talker variations.

Preliminary studies in other vowel environments indicate
that similar cues are present, though they may not be as
distinct. Figure 6 shows the that reasonable discrimina-
tion was obtained for one talker in the vowel environment
“apesh,” “atesh,” and “ackesh,” (initial vowel (/2/ as in
“had”). A similar experiment across 20 talkers revealed
much poorer separation than the previous “upper”-“utter”-
“ucker” environment, especially in the slope dimension. It
has been hypothesized that F2 of /ee/ is quite near the re-
ported “locus” of alveolar stops, thus slopes are smaller in
magnitude and may be variable due to natural inter-speaker
variations. For instance, if a talker has a naturally high F2,
the slope for an alveolar stop may be negative, and thus re-
semble a labial stop. Work is underway in extracting cues
that are invariant across vowel environments.

5. SUMMARY

The DESA-1 algorithm is a computationally simple and ro-
bust way of detecting rapid formant variations. The re-
sults presented here demonstrate the advantage of nonlin-
ear, nonstationary analysis over conventional techniques:
The DESA-1 method yields results comparable to the time-
varying LPC method of [4], and can effectively extract stop
classification information for speech recognition applica-
tions. In addition, the DESA-1 method avoids the iterative
estimation procedures of [4], and is computationally simple
enough to be performed in real time.
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Fig. 4: F2 slope vs. F2, 20 talkers, DESA-1 results.
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Fig. 5: F2 slope vs. F2, 20 talkers, LPC results.
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Fig. 6: DESA-1 F2 slope vs. F2, single talker, vowel [a/.
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