
ABSTRACT

This paper describes techniques for classifying video frames
using statistical models of reduced DCT or Hadamard transform
coefficients. When decimated in time and reduced using trunca-
tion or principal component analysis, transform coefficients taken
across an entire frame image allow rapid modeling, segmentation,
and similarity calculation. Unlike color-histogram metrics, this
approach models image composition and works on grayscale
images. Modeling the statistics of the transformed video frame
images gives a likelihood measure that allows video to be seg-
mented, classified, and ranked by similarity for retrieval. Experi-
ments are presented that show an 87% correct classification rate
for different classes. Applications are presented including a con-
tent-aware video browser.

1. INTRODUCTION

Automatic classification of video is useful for a wide variety of
applications, for example, automatic segmentation and content-
based retrieval. Applications using automatic classification can
support users in browsing and retrieving digitized video [1].
Other applications include identifying close-up video frames
before running a computationally expensive face recognizer.

In this paper, we describe methods for classifying video frame
images using statistical models. Images are transformed using a
discrete cosine transform (DCT) or a Hadamard transform (HT)
[1]. For accurate modeling, we reduce the dimensionality of the
resulting coefficients by truncation or principal component analy-
sis (PCA). Video frame classification consists of two steps: in the
first step, model parameters for a particular class are estimated
from a number of example training frames. In the second step,
unseen test data is compared with each class model. Using a
Gaussian model, the likelihood that the model generates the
unknown data can be computed. This can be used as a distance
measure to judge how similar the test data is to the example train-
ing data. Or, if a number of class models are used, the one with
the highest probability of generating the unknown data can indi-
cate the class of the unknown frame or image. Gaussian models
can capture the characteristic composition and shape of an image
class, while modeling the variation due to motion or lighting dif-
ferences. Unlike many similarity measures based on color histo-
grams, this approach models image composition features and
works on black-and-white as well as color sources.

To assess our approach, we conducted a number of experiments
on a corpus of videotaped staff meetings. We categorized the
video shots into six categories and divided the corpus into a train-
ing and a test set. The next section, discusses related work, while

following sections describe our approach in more detail and
present experimental procedure and results.

2. RELATED WORK

Swanberg et al. [10] analyze individual image frames with a com-
bination of color histogram and pixel-domain template matching.
Zhang et al. [12] use color histograms, as well as motion and tex-
ture features, to segment video. Several researchers [3, 12] have
looked at indexing video in the compressed domain, using the
sub-block and motion information already present in MPEG-
encoded video. Mohan [9] has done video shot matching by com-
paring time sequences of rank-based frame “fingerprints.” Many
image retrieval systems use statistics of block-transform coeffi-
cients [6].

The exception to block transforms seems to seems to be wavelet
approaches, which typically analyze an entire image using a
wavelet basis (such as the Haar [7]). Quantizing and truncating
higher-order coefficients reduces the dimensionality, while the
similarity distance measure is just a count of bitwise similarity
[7]. This approach apparently has not been used with more tradi-
tional transforms such as the DCT or Hadamard, nor has it been
applied to video. Neural-network and decision-tree approaches
have been used to classify images, but in the spatial (pixel inten-
sity) domain [8]. A radial projection of FFT coefficients has been
used as a signature for image retrieval [5].

Hidden Markov models have been used to segment video, but not
on transform features, which is surprising given the ubiquity of
this approach in the speech recognition domain. One approach
uses color histogram features and motion cues [4]. Another
approach uses a Markov-like finite state machine on principal
components of pixel intensities [11].

3. VIDEO CLASSIFICATION

Each frame image is transformed, using either the DCT or HT.
For many applications, a full video frame rate is not necessary,
and frames can be decimated in time such that only one of several
frames is transformed. This can reduce storage costs and compu-
tation times dramatically. The transform is applied to the frame
image as a whole, rather than to small sub-blocks as is common
for image compression. The transformed data is then reduced by
discarding less significant information. This can be done using
one of a number of techniques, for example, truncation, principal
component analysis (PCA), or linear discriminant analysis
(LDA). For this application, PCA works especially well, as it
tends to decorrelate feature dimensions, thus the data better
matches the diagonal-covariance assumption of the Gaussian
models used in the Section 4 experiments. This results in a com-
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pact feature vector (the reduced coefficients) for each frame. This
representation is appropriate for classification, because frames of
similar images will have similar features. 

Given sufficient data reduction, it is simple to train a classifier to
discriminate between typical meeting video scenes such as pre-
sentation slides, presenter, or audience. Besides our domain of
meeting videos, this approach should work well whenever images
in a particular class have a similar composition, for example shots
of a news anchor.

Given feature data, an image class can be modeled with a multidi-
mensional Gaussian distribution. We assume a diagonal covari-
ance matrix, i.e. the off-diagonal elements are zero so the model
will be robust in high dimensions (we present results for dimen-
sionality up to 1000). To model a class using Gaussian models,
the mean and covariance across a set of training images is com-
puted. If single-mixture Gaussian models are used, this can be
rapidly done in one pass over the data. More sophisticated models
can use Gaussian mixtures, given the well-known Expectation-
Maximization algorithm to estimate the multiple parameters and
mixture weights, though this requires iteration. For this reason,
we use single-mixture Gaussian models which can be computed
rapidly on the fly. The log-likelihood alone is a useful measure of
similarity to a particular class model, and can be used directly in
applications such as the video browser of [1]. Given an unknown
frame and several models, the unknown frame can be classified as
to which model would produce it with the maximum likelihood.

4. EXPERIMENTS

4.1 Setup

Video classification experiments were performed on a corpus of
video-recorded staff meetings held over a six-month period. Each
video is produced by a camera operator, who switches between
video from three cameras with controllable pan/tilt/zoom, and the
video signals from a PC and rostrum camera. The latter device
allows presentation graphics such as transparencies and opaque
materials to be displayed on a rear-projection screen. Thus video
shots typically consist of presenters, audience shots, and presenta-
tion graphics such as PowerPoint slides or transparencies. The
resultant video is MPEG-1 encoded and stored on a server.

There were 21 meeting videos in our corpus, for a total of more
than 13 hours of video. The corpus was arbitrarily segmented into

testing and training segments by taking alternate meeting videos.
We labeled both testing and training data into six classes of Table
1, which also shows the number of frames in each training and
test set. A significant amount of data did not fit into any category
and was left unlabeled. We chose six classes to represent presen-
tation graphics, (VOLGHV), long shots of the projection screen both
lit (ORQJVZ) and unlit (ORQJVE), long shots of the audience
(FURZG) and medium close-ups of human figures on light
(ILJRQZ) and dark (ILJRQE) backgrounds. When a single cate-
gory (such as screen shots) had significantly different modes
(such as lit and unlit) we used a separate model for each mode.
This ensured a better match with our single-Gaussian models,
though another approach might use a Gaussian mixture to model
the combined classes. Different models can be combined when
they are intended to model the same logical class For example, we
combine the ILJRQZ and ILJRQE�classes when presenting classi-
fication results, as the background color doesn’t matter when the
intent is to find human figures.

MPEG frames taken at ½-second intervals were decoded and
reduced to  grayscale intensity images. The resulting
frame images were DCT and HT coded. Both the coefficients
with the highest variance (rank) and the most important principal
components were selected as features. Gaussian models were
trained on the training set using a variable number of dimensions
between 1 and 1000. Figure 1 shows samples for one of the fea-
ture categories (ILJRQZ). That category consists of close-ups of
people against a lighter (white) background1. The mean and cova-
riance were trained using the highest-variance DCT and HT coef-
ficients. Each model has been imaged by inverse-transforming the

1Note how the images for this class are highly variable in camera 
angle, lighting, and position, perhaps more than images of a typi-
cal news anchor.

Shot Category Training Data Test Data

VOLGHV 16,113 12,969

ORQJVZ 9,102 5,273 

ORQJVE 6,183 5,208 

FURZG 3,488 1,806 

ILJRQZ 3,894 1,806 

ILJRQE 5,754 1,003 

not categorized 13,287 10,947

Total 57,821 39,047

Table 1. Number of training and test frames (at 0.5 Hz)
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Figure 1. Example training frames and model means.
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mean with the discarded coefficients set to zero. Though the cova-
riance is not shown, it is clear the mean captures the major fea-
ture—the dark central figure—from the training data.

5. RESULTS

Thresholding the likelihood at a multiple of the standard deviation
(from the covariance ) has shown to be quite effective in
detecting class membership. Such a threshold is also fairly inde-
pendent of the number of coefficients used. Figure 2 shows how
the slide detection rate varies across different thresholds. The
graph indicates that a threshold around 1.1 standard deviation
results in an 84% correct slide recognition rate with few (9%)
false positives. The likelihood, when normalized by the standard
deviation, is useful by itself as an indication of a given frame’s
similarity to a class model, as discussed in Section 6.

All classes have similar detection rates, however, the number of
false positives varies among the different classes. To show the dif-
ferent model results without thresholding, we used a maximum-
likelihood approach to classify labeled test frames. Table 2 shows
the results from using the 30 highest-variance DCT coefficients.
The class ILJ is a superset of the combined ILJRQZ and ILJRQE
classes. Each column is the ground-truth label of the test frames;
the rows indicate the fraction of the samples in the test set that are
recognized as the row class. Non-zero off-diagonal elements rep-
resent classification errors. Columns sum to 1 as every labeled
frame has a maximum-likelihood class even if different from the
label.

To study the influence of the number of transform coefficients for
the different transform methods, we computed the overall correct-

ness, i.e., the fraction of samples that were recognized in the cor-
rect category. Figure 3 shows the results. It is interesting to note
that the recognition distribution for the principal components of
the DCT and HT is virtually identical. The best performance
(87% correct) was achieved using 10 principal components. With-
out PCA, variance-ranked DCT coefficients peak at 30 whereas
HT coefficients achieve a slightly higher accuracy at 300. Though
the HT is often criticized for not preserving perceptual features as
well as the DCT, it appears to work somewhat better here, perhaps
because the rectilinear HT basis functions match image features
(such as slides or walls) better than the sinusoidal DCT bases.

6. APPLICATIONS

We have developed an application that uses video classification to
help users find interesting passages in video [1]. It is not simple to
determine whether a long video contains desired information
without watching it in its entirety. Our intelligent media browser
allows fine-grained access to video by taking advantage of the
metadata extracted from the video (see Figure 4). A confidence
score for a particular video is displayed graphically on a timeline.
The confidence score gives valuable cues to interesting regions in
the source stream by using the time axis for random-access into
the source media stream. For example, the normalized log-likeli-
hood of the slide model is displayed on the timeline of Figure 4.
Two areas of high likelihood (confidence) are visible as the grey
or black regions: these correspond to slide images in the video.
Selecting a point or region on the time axis starts media playback
from the corresponding time. Thus time intervals of high potential
interest can be visually identified from the confidence display and
easily reviewed without a linear search.

6.1 Further Applications

The experiments of Section 5 shows how a Gaussian classifier
can detect video frames from a particular class in the context of a
longer video. This can be used to segment shots, defined as a
region of similar frames, from a longer video. This can provide
useful index points, for example the beginning of a shot contain-
ing slides. In the other direction, if shots have been already
located, for example using frame or color differences, a shot
model can easily be trained on all the frames from that shot. This
allows shots to be retrieved by similarity, because the covariance
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Figure 2. Slide detection performance vs. threshold.

 

VOLGHV ORQJVZ ORQJVE FURZG ILJ

VOLGHV 0.872 0.017 0.000 0.000 0.000

ORQJVZ 0.009 0.900 0.000 0.000 0.000

ORQJVE 0.000 0.002 0.749 0.000 0.000

FURZG 0.001 0.042 0.014 0.848 0.010

ILJ 0.118 0.039 0.237 0.152 0.990

Table 2.  Frame classification results. Columns are the
true label; rows are the model with highest likelihood. 
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Figure 3.  Classification vs. number of coefficients.



will capture differences caused by motion or other changes. Key-
frames to represent a given shot are easily found by finding the
frame closest to the shot mean, using a likelihood distance metric.
Because the number of coefficients that represent an image is
extremely modest (as small as 10 per frame for the PCA features),
it is possible to store the features alongside the video with virtu-
ally no overhead. Gaussian models are straightforward to com-
pute, so models can be trained on-the-fly. This enables
applications like interactive video retrieval, where the user could
indicate the desired class, for example, by selecting a video region
by dragging across the timeline. A model could be rapidly trained
on the features for this region, and the similarity of a large video
corpus could be rapidly computed. Regions of high likelihood in
the corpus are regions that match the selected video well, and
would serve as indexes into the corpus.

6.2 Application to Motion Analysis

Simple Gaussian models as above compute the mean or average
of the training frames, and so lose any time-varying information
associated with the video sequence. To capture dynamic or
sequential information, models can be enhanced in a number of
ways. By training models on the frame-to-frame difference or
trend of the reduced features, time-varying effects such as motion
or fades can be modeled. To find the similarity between video
sequences, a correlation score can be computed by summing the
frame-by-frame inner product of the two sequences. Similar
sequences will have a large correlation. Dynamic programming
can be used to find the best match between two sequences of dis-
similar length. A better way of capturing dynamic events would
be a hidden Markov model, using Gaussian mixtures to model
feature output probabilities. Given the efficient training and rec-
ognition algorithms developed for speech recognition, this is a
promising area for future investigation.

7. CONCLUSIONS

The experiments presented here demonstrate that statistical mod-
els of transform coefficients can rapidly classify video frames
with low error rates. The computational simplicity and low stor-
age requirements of this approach enable novel applications such
as interactive video retrieval. We are exploring more sophisticated
statistical models to increase the versatility of our approach.
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