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ABSTRACT 
We describe a system called FlyAbout which uses spatially 
indexed panoramic video for virtual reality applications. 
Panoramic video is captured by moving a 360° camera along 
continuous paths. Users can interactively replay the video with the 
ability to view any interesting object or choose a particular 
direction.  Spatially indexed video gives the ability to travel along 
paths or roads with a map-like interface. At junctions, or 
intersection points, users can chose which path to follow as well 
as which direction to look, allowing interaction not available with 
conventional video. Combining the spatial index with a spatial 
database of maps or objects allows users to navigate to specific 
locations or interactively inspect particular objects.   

Keywords 
Panoramic video, spatial databases, video maps, interactive video, 
virtual reality 

 

1. INTRODUCTION 
 
There have been many attempts to recreate the experience of 
being in a particular place. Traditionally, this was done only 
through art and descriptive prose. The invention of photography 
provided a great step forward in the ease and accuracy with which 
places could be depicted. Motion pictures and video recording 
provided another important improvement. However, photographs 
or motion pictures are inherently passive media. They provide the 
user with particular views of the space, but only those chosen by 
the photographer or cinematographer in advance. The end user has 
no control over what is seen and when. Even if video is panned 
through different views from a given point, or is taken in motion 
along some path, the user’s experience is of ‘going along for the 
ride’, but not of choosing where to go or to where to look on that 
ride. 
 
Ideally, reconstructing the experience of ‘being there’ would 
allow the user to freely move around, and choose where to look. 
One approach to this requires a computer model of the space, and 
real time view rendering as a user virtually navigates through the 
space [1]. In most cases this approach is limited by the fidelity of 
the underlying 3D model, and cannot provide photorealistic views 

of the space even with computationally expensive rendering 
techniques. A promising recent approach is to record sufficient 
image data to approximate the flow of light in any direction and 
through any point in the space. This allows a view to be 
constructed for any particular position. Image data is represented 
in structures called “light fields” [2] or “lumigraphs” [3]. 
However, representing this data requires capturing four-
dimensional images, which is prohibitively expensive to record 
and store for most practical cases. 
 
Two image-based approaches have been developed which 
partially address the problem. One is panoramic imagery, which 
allows a user to freely chose which direction to gaze from a fixed 
point of view. Examples include Quicktime [4], IPIX [6], and 
BeHere [15]. Another approach is to associate video with paths 
the user may follow, or images with points along those paths [11]. 
FlyAbout combines these approaches, by associating panoramic 
images with points along spatial paths. The result is spatially 
indexed panoramic video. Though recording panoramic images at 
many finely spaced points could approximate it, in practice it is 
easier to record time-indexed panoramic video taken along one or 
more paths. 
 
In this paper, we describe FlyAbout, a lightweight system for 
interactive navigation of a photorealistic representation of space. 
The FlyAbout system offers immersive, interactive navigation of 
a space without the expense of generating and rendering VR 
models. Spatial images are captured in a new media type called a 
VideoMap, which differs from conventional video in that it is 
both panoramic and spatially indexed. 
 

 

 

Table 1. Comparisons of Spatial Capture Technologies 
 

  
Positional Degrees of Freedom: 

 
View: 0 ( discrete 

points) 
1 ( paths) 2,3 

Fixed Photographs 
Aspen Project [11], 

Views of Golden 
Gate [16] 

CG 
rendered 
images. 

Panoramic 
QTVR [4], 

IPIX[6] 
FlyAbout 

CG based 
VR, 

Lightfields 

 



Table 1 shows a conceptual map of various spatial capture 
approaches. There is a gap between still panoramic images (look 
anywhere from one point) and general 3D rendering (look 
anywhere from any point). The FlyAbout system falls neatly 
within that gap, allowing the user to look anywhere, but from a 
limited—yet still rich—range of points. This is a very practical 
compromise between viewpoint constraints and complexity. We 
can offer the user an experience almost as good as a "fly 
anywhere" system without the tremendous cost of capturing and 
rendering a full 3D modeled environment. 
 

2. RELATED WORK 
A number of systems exist for panoramic still images.  One of the 
first systems in wide use was is QuickTime VR [4]. A more recent 
approach is IPIX [14], where wide-angle still images are recorded, 
and unwarped in a postprocessing step. BeHere delivers 
panoramic video over the Internet via a wide-angle lens and a 
streaming system [15]. None of these applications are spatially 
indexed. Some work has been done with spatial indexing, but 
without full seemless panoramic images presented as a continuous 
stream.  Examples are the artistic works by Michael Naimark 
[13],[16], and the front, rear and side view images used in the 
Aspen project [11]. DizzyCity.com provides multiple panoramic 
views from New York City street corners (using IPIX images), 
but does not permit motion along paths from point to point.  The 
work described in [11] also included images recorded with a 
special panoramic lens, but requiring a special projection display 
for viewing.   In contrast, the work presented here combines 
spatial indexing with full panoramic digital video. Previous work 
also includes panoramic video recorded along interesting routes, 
but the paradigm for presenting this to users has been traditional 

time-based video [19].  Interesting work has also been done to 
derive spatial map information from the panoramic image [10].  
 
In researching this paper, we have found that Michael Naimark 
and Andrew Lippman (among others) anticipated many FlyAbout 
innovations in the Aspen project [11]. We acknowledge the 
pioneering work done there, which is even more impressive given 
the expensive and cumbersome analog video equipment of two 
decades ago. In many ways, FlyAbout can be seen as a 
lightweight, inexpensive, and updated reincarnation of that work. 

3. THE FLYABOUT SYSTEM 
The FlyAbout system captures panoramic video from a 360° 
camera that is moved through a space of interest. The recorded 
video is spatially indexed and presented through an interface we 
call a VideoMap player.  FlyAbout explicitly trades the time index 
for a spatial index. Paths can be navigated through a VideoMap by 
spatial relations such as “move forward” rather than the typical 
“play, stop, rewind” metaphors of traditional temporal video. 
Additionally, objects and locations can be inspected using a map-
like interface: clicking on a map item brings the view to that 
particular location or object. The FlyAbout system displays both 
the panoramic video and an integrated spatial map that indicates 
the current viewpoint and gaze direction, as shown in Figure 1. 
Figure 2 shows the architecture of the FlyAbout system that is 
described in more detail below.  A VideoMap may also contain 
text information, as seen in Figure 3. Navigation may be 
controlled through the panoramic video window, the spatial map, 
or the text display. 
 

 

 

Figure 1 FlyAbout Video Player with Map. 

 
FlyAbout player for viewing Stanford courtyard. Virtual paths correspond to actual paths through the courtyard. Paths 
are shown as red lines on map. The red circle indicates current view position, and protruding arrow indicates gaze 
direction. A small “heads up display” map gives cues to the available navigational choices. Objects from a spatial 
database are captioned in red on the image, at a location determined from the view angle and the object’s coordinates.  
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Figure 2. Overview of VideoMap Player. 

 
VideoMap Player consisting of a motion engine and 
multiple media players 

 
A VideoMap is constructed by recording the panoramic video and 
acquiring associated spatial metadata. The video is then processed 
and indexed, and rendered by a motion engine and VideoMap 
player. This allows users to virtually navigate the space. Section 
3.1 describes VideoMap construction in greater detail. 

 

3.1 Creating VideoMaps 
 
Any panoramic camera can be used for recording VideoMaps, 
provided it can capture a horizontal 360° field of view. Though 
our VideoMaps could accommodate fully spherical panoramic 
video, we currently use a cylindrical projection in which views of 
the zenith and nadir are not available. This is for usability as well 
as practical reasons: there is typically little interest in viewing the 
sky or floor. Also the practical problems of capturing a fully 
spherical panoramic view should be obvious: where do you put 
the tripod, (let alone the videographers), so the view is not 
obstructed? Current panoramic camera designs include those 
based on wide-angle lenses [6],[15] mirrors [5] or multiple 
cameras [7],[9]. We used “FlyCam,” a 4-camera 360° system 
developed at our laboratory [17], and shown in Figure 4.  Because 
a FlyCam is compact and lightweight (only a few pounds, 
including mounting) it is relatively easy to rig various mobile 
camera platforms, including a dolly for indoor locations and 
outdoor footpaths, as well as a vehicle-mounted platform for 
roads. A car with a sunroof was especially handy for the latter. 
Four streams of video, one from each camera, were captured on 
four separate DV camcorders. (Though not essential, a fifth video 

 

 
 

Figure 3. VideoMap Web Interface. 

A web based VideoMap of Lake Tahoe, California. The upper right window displays the current view, which may be 
controlled by mouse or keyboard. The map at left shows available paths in red, and indicates the current position with a 
dot. The bottom frame provides information about the current view, and can also be used to control navigation via text 
hyperlinks. 

 



stream was also recorded, having a reduced-resolution camera 
image in each quadrant produced by a quad processor. This last 
stream was useful for several purposes: synchronization, sanity-
checking, and to produce a reduced-resolution VideoMap.) 
 

 

Figure 4. FlyCam used for Panoramic Recording. 

 
When using a multiple-camera panoramic imaging system such as 
FlyCam, the multiple video streams must be synchronized. 
Several methods of synchronization are possible, including free-
running, where the video recordings are not synchronized. Free-
run recordings are synchronized in postproduction by finding a 
common start time, for example using a camera flash visible in all 
cameras.  Though the individual time bases might drift, in practice 
they are stable enough to be nearly frame-accurate for recordings 
of an hour or less. Alternatively, recordings may be synchronized 
using a timecode generator, either on the audio track or as part of 
the recorder transport. Another alternative is to synchronize the 
time base of the video cameras using either “genlocking” or a 
time base corrector, and finding a common start frame. In this 
case all recordings will be frame-accurate with respect to each 
other.  For our most recent recordings, we write SMTPE timecode 
on one audio track for each video recording, and those timecodes 
are used in postproduction to synchronize frames. 
  
Spatial metadata is acquired in concert with the panoramic video, 
describing the spatial location of the camera at any given moment. 
This can easily be done using available Global Positioning 
Satellite (GPS) equipment or any of a number of other methods. 
Relevant text may also be collected and marked with either time 
or, equivalently, position. During playback, this metadata assists 
navigation by displaying spatial location on a generated map, or is 
integrated with an existing map or spatial database. Relevant text 
or hyperlinks can be displayed at the appropriate positions or 
views. Map data may be taken from existing maps, aerial 
photographs, spatial databases, or other available images, for 
example a building floorplan. Given GPS or similarly accurate 
spatial data, a simple map of the camera paths can be rendered 
directly from the data. 
 
Camera paths are conveniently represented as data tuples of the 
form (x,y,a,t) where x and y are the location of the camera, a is the 
orientation angle of the camera, and t is the time. (Height (z) data 
can also be captured if relevant). Such a tuple could be given for 
every frame of video, however, assuming the camera motion is 
relatively smooth, a much smaller number of tuples can be 

provided, and linear interpolation can be used to estimate camera 
position and orientation at intermediate points. Spatial sensors, 
such as a GPS unit, may produce the spatial metadata 
automatically. Other sources of spatial data include radio beacons 
or dead reckoning from acceleration or vehicle speed and heading 
sensors. Alternatively, spatial data could be produced by image 
processing of the panoramic images, for example by using 
triangulation from known points to determine camera position. In 
simple cases, it is feasible to produce the spatial metadata by 
hand, given a map, known paths, and landmarks visible in the 
video. In the absence of specific position data from external 
sources, position estimates can be derived from analysis of the 
panoramic video data. The speed and heading of camera motion 
can be estimated from analysis of “optical flow” in the image 
[12]. 
 
Ideally, the panoramic video should be collected when there are 
no people or other objects moving through the space.  These 
objects will appear to move backwards when the video path is 
traversed in a direction opposite to the direction it was captured 
in. However, if the camera is moved slowly, so that many images 
are available for any given position, a median filter or other image 
processing could be used to eliminate the transient objects. 
Alternatively, a single path can be captured in both directions; 
during playback the one with the same direction of travel is 
displayed to the user. 
 

3.2 Rendering & Motion Engine 
In multiple camera systems such as FlyCam, the recorded video 
streams must be stitched together before they can be presented as 
a smoothly pan-able virtual view.  In our FlyCam system this is 
done by first mapping each camera view, modeled as a 
perspective projection (like a pinhole camera), onto a portion of a 
cylinder.  The details of this procedure can be found in [17]. In the 
cylindrical projection, the images from adjacent cameras overlap 
slightly; cross fading these regions make camera border artifacts 
less conspicuous.  Though the FlyCam system can do this 
processing in real time, it is done off-line for creating Video Maps 
which need not be available in real time.  
 
Offline, video from the DV camcorders are uploaded as AVI files 
over a FireWire interface. The resolution of the images is 
720x480. The multiple AVI files are rendered into a motion jpeg 
file that contains a complete 2400x480 panoramic image for each 
time frame.  (The horizontal image resolution is somewhat less 
than 4 X 720 because of image overlap.) During playback, the 
selected view is cropped from the full panorama.  Naïve cropping 
results in distortions as the cylindrical projection is mapped onto a 
planar display: straight lines will appear curved. It is 
straightforward to map the cylindrical projection back to a 
perspective representation so that straight lines, such as building 
edges, appear straight. However, we find that a cylindrical 
projection is often not objectionable, particularly while viewing 
natural outdoor locations where there are few straight lines.  
 
Because the VideoMap interface of FlyAbout is spatially rather 
than temporally oriented, a core component of the system is a 
‘motion engine’. In traditional video, including panoramic video, 
frame images are ordered by time, and motion corresponds to 
increasing time. A typical interface for a panoramic video 
appliance has primitives like: 
 



Interface VideoController { 
 Play(speed); // in seconds per second 
 Stop(); 
 SeekToTime(time); 
 GetCurrentTime(); 
 SetGazeDirection(angle); 
 SetFieldOfView(angle); 
}; 

 
Video frames are sent to a display, and this interface can be used 
to control the speed, or position of the video.  A speed of unity 
means the video is played at normal speed, but other speeds could 
be used to play at multiples of real time, including fast-forward, 
slow motion, or even reverse for negative values.  The interface 
also allows the view direction and degree of zoom to be changed. 
 
The FlyAbout controller sends frames to a display in a similar 
manner, but is spatially based.  Rather than playing video by 
moving forward in time, video is played by moving along a path 
at some velocity.  The interface looks something like this: 
 

Interface FlyAboutController { 
 Move(speed, navigationInfo); 
 // speed in meters/sec 
 Stop(); 
 MoveAhead(distance, navigationInfo); 
 MoveTo(position); 
 GetCurrentPosition(); 
 SetGazeDirection(angle); 
 SetFieldOfView(angle); 
}; 

 
The Move function indicates motion along the current path at a 
given speed. The NavigationInfo structure specifies 
parameters that control the subtleties of navigation.  For example, 
it indicates the preferred direction, and what to do when an 
intersection is reached.  The default rule is that motion always 
proceeds in the direction closest to the preferred direction. 
NavigationInfo can also specify a mode in which the 
preferred direction is updated to match the forward direction 
along the path.  This means that motion will always be as ‘straight 
as possible’, and when an intersection is reached, the path chosen 
will be the path as close as possible to current direction. 
 
The FlyAbout controller consists of a motion engine, which 
continually updates its viewpoint and gaze direction based on the 
current motion and navigational input.  The controller maps 
positional information back to temporal information, using the 
spatial index to get the actual time-based video frames. 
 

3.3 Displaying FlyAbout Video 
 
Presenting a VideoMap to the user can be done in a number of 
ways. However, a naïve playback of the full panorama is not 
particularly useful, and in fact can be counterintuitive. When 
displayed on a conventional planar display, an unwrapped 
cylindrical panoramic image is not easy to interpret, especially 
when moving: one quadrant of the image appears to be 
approaching, one receding, and the other two moving past in 
opposite directions. 
 

We prefer to display a virtual view towards a particular direction, 
by cropping the cylindrical panorama to a normal aspect ratio and 
mapping to a planar projection. The user may then change their 
view direction to pan around the full panoramic image, and may 
also choose to zoom in or out.  For a more compelling experience, 
a large virtual view can be displayed on a plasma or projection 
screen. The FlyAbout architecture allows multiple simultaneous 
views from the same point.  So two or more large displays in a 
room could present multiple virtual views at a fixed relative angle, 
for example to simulate multiple windows on a vehicle. We have 
also implemented FlyAbout playback using a head mounted 
display, with a head tracker used to control the gaze direction. 
This gives a photorealistic, immersive “virtual reality” experience.  
 

3.4 VideoMap Player 
Our primary user interface is a VideoMap Player that displays the 
cropped panorama alongside a spatial map (as shown in Figure 1).  
The map indicates the users viewpoint and gaze direction; 
clicking on the map is one way to navigate. Our system supports 
VideoMaps in a standalone player as in Figure 1, or as a dynamic 
web page, as shown in Figure 3.  In addition to the video and map 
windows, text links can also be included. Navigation can then be 
controlled using video, map, or text. 
 
Dragging the mouse in the video window controls gaze direction, 
and together with keyboard commands can control forward or 
backward motion.  We have experimented with a variety of 
interface configurations, and have found that using mouse 
dragging to control gaze, and arrow keys to control motion, is 
adequate in many cases.  Key commands can also be given to stop 
or reverse direction.  Mouse dragging together with the shift key, 
can be used to precisely control motion or speed.  We have 
implemented a joystick control, in which the joystick is moved in 
the direction of desired motion, and rotation of the joystick is used 
to rotate gaze direction. Alternatively the mouse can be used in 
the map window to drag the location (indicated by a ‘you-are-
here’ dot) or gaze direction.   Popup menus in the map window 
can be used to move the view as near as possible to a selected 
location. Clicking on map objects can also move the gaze 
direction to that object. 
 
Text can also provide additional information to the user.  As the 
viewpoint moves, the text display can be updated to provide 
descriptive text. Conversely, text hyperlinks can change position 
or gaze direction.  Links may be extracted from a GIS database, 
for example to indicate locations of nearby hotels. A text link to a 
particular hotel could move the viewpoint to a position near that 
hotel. Additionally, a URL can be generated at any time for the 
current viewpoint and used to ‘bookmark’ points of interest. 
 
Figure 2 shows the basic player structure, where the motion 
engine, display, and UI are all implemented as one program in a 
single address space.  This system has been implemented and can 
render VideoMaps stored on a local hard drive, CD or DVD. A 
networked FlyAbout system has also been implemented, where 
the VideoMap is presented in a web browser, as shown in Figure 
3.  In the current implementation, panorama images are updated 
by server push.  A streaming video format could be used as well, 
although the buffering must be kept small enough so that latency 
does not ruin the sense of interactivity.  The map viewer is 
implemented as a Java applet.  A simple HTTP protocol controls 
the motion engine by sending HTTP GET requests with special 



control URLs.  This allows the interface to be controlled by any 
number of sources, for example a Java applet, links in an HTML 
page, or by any other device or system that can generate HTTP 
requests. 

 

Figure 5. Web based VideoMap. 

The FlyAbout HTTP Server.  The client browser image is 
updated by server push, and the client’s interactive map 
viewer is implemented as Java applet. Text associated 
with the current location is displayed in another frame.  

3.5 Navigating VideoMaps 
When viewing VideoMaps, users may control their motion in 
addition to controlling the gaze direction. On any given path, the 
user may move in either of two directions along the path, and may 
control the speed. We are experimenting with a variety of 
navigation controls such as a mouse, a joystick, and pedals. When 
motion brings the view position to a path intersection, users may 
indicate which of the several paths they will take. There are a 
variety of possible interfaces, for example “left, right, straight” 
buttons that are activated when there is a directional choice to be 
made. For some applications, the user can control the direction of 
motion independently of the gaze direction. This is useful when 
examining a particular object by navigating around it. In this case, 
controls can allow the user to “snap” the gaze to a particular 
object, such as a sculpture or building, so that it is in constant 
view as the user moves around it. This latter feature is particularly 
useful in situations such as a sculpture garden or car sales lot 
where objects, rather than the scenery or paths, are the interesting 
points.  
 
In most applications, there is no real need for completely 
independent path direction and gaze direction control. A simpler 
approach is to use the gaze direction as the preferred direction at 
an intersection. When motion brings the view position to an 
intersection, the path closest to the current view direction is 
chosen. Another simplified navigation mode uses the current 
direction of motion as the preferred direction. In this case the rule 
is to go as ‘straight as possible’ at an intersection. This can be 
useful for a ‘hands off’ tour in which the motion proceeds 
continuously along a path.  
 

It is important for the user to be aware of navigational choices, in 
particular where intersections are located and the paths available 
from them.  In many cases this may be obvious from the view. For 
example, if the VideoMap is collected along roads or obvious 
paths, then it should be made clear to the user where they may 
turn onto an alternate path or if they are constrained to a single 
path.  (For example in the courtyard shown in Figure 1, the paths 
available for virtual navigation match the footpaths through the 
courtyard and are clearly visible in the video.) However, it is not 
obvious what paths are available in the absence of visual cues. 
Also, for footage collected along a road or driveway, some 
turnoffs or driveways may not be accessible. In these cases, the 
user could determine their choices by consulting a map interface, 
as in Figure 3. However consulting a map may distract from the 
immersive experience. An alternative is to show a small map 
segment oriented to the users current gaze direction. This can be 
seen in the bottom right corner of Figure 1 
 
Another useful function is to allow the user to specify an object or 
location to look at rather than a specific direction. As the user 
moves around various paths, their gaze remains fixed on the 
object.  We have implemented this as a ‘focus’ location that can 
be set to any point in the map.  This makes it easy to view an 
object from any position. This functionality is similar to “object 
movies” of QuickTime VR, which provide views of a single 
object from multiple directions. However, unlike object movies, it 
is not necessary to carefully point the camera at the object when 
the video is collected.  Furthermore, some path segments may be 
used as part of the paths for navigating around more than one 
object. This functionally is particularly useful for e-commerce or 
other applications, for example in a car sales lot. If cars are 
arranged in a grid, then capturing FlyAbout video along all grid 
borders then lets the FlyAbout system automatically generate a 
view of any car from any angle. 
 
A particularly powerful aspect of this system is the ease with 
which hyperlinks can be made between video images and spatial 
objects. When integrated with a spatial database of object 
coordinates, it is simple geometry to find the best location and 
gaze direction to view any object. Thus clicking on a map object 
can bring up a view, or in reverse, it is easy to answer the question 
“what am I looking at” by finding the closest object to the gaze 
vector. An ultimate application of this is to automatically annotate 
the video image, for example by overlaying text as in Figure 1, 
where the Rodin sculptures are indicated.  

4. EXAMPLE VIDEO MAPS 
 
We have experimentally produced several VideoMaps for a 
variety of different spaces and paths including a conference room, 
an outdoor courtyard and indoor lobby, a courtyard at Stanford 
University with a number of intersecting paths, and a highway 
around Lake Tahoe, California.   

4.1 Kumo Conference Room 
 
We produced our first VideoMap of a conference room at our 
laboratory.  The camera was mounted on a dolly with swivel 
wheels, so we were able to keep the camera orientation constant 
as a total of two minutes of video was collected.  This web based 
VideoMap is shown in Figure 6.  The room map used was a top 
view of a 3D room model that had been derived from an 
architectural blueprint. 
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4.2 Courtyard with Fountain 
The first outdoor VideoMap we produced was along a path around 
a fountain on Xerox campus in Palo Alto. About 5 minutes of 
video was collected, again with a constant camera orientation. 
Chosen paths included some that went up stairs, and also a short 
segment entering and exiting the lobby of a building.  Capturing 
paths along stairways required more teamwork then ingenuity: 
two people lifted the camera dolly and climbed the stairs as 
smoothly as possible. Figure 7 shows the VideoMap; the view 
location is at the fountain viewing the main building. Figure 8 
shows the same VideoMap, although here the view is at the lobby 
entrance. The two different views are reflected in the different 
view location of the two maps. 

4.3 Stanford Courtyard 
We produced a VideoMap of a courtyard adjacent to the Main 
Quad on the Stanford campus. Our first attempt, on a busy 
Saturday, was hampered by too many visitors.  Seeking a less 
crowded time, our next attempt was during a morning hour; 
however the low angle of the sun caused objectionable artifacts 
when directly in the camera view. (This is a general problem with 
panoramic imaging of any type.) We had best success at a mid 
morning on a weekday; a view of the resulting VideoMap was 
shown in Figure 1. The courtyard has a number of paved paths 
across a lawn, and we collected video along each of the paths,  for 
a total of about 15 minutes of video taken in four shots.  The paths 
were paved with brick, causing some shaking of the camera.  The 
effect during playback is not completely objectionable, and 
suggests walking rather than smooth motion or extreme shaking. 

 

 

Figure 6. VideoMap of Conference Room. 

 

 

Figure 7. FlyAbout VideoMap of Courtyard. 
 

 

Figure 8. VideoMap of Courtyard. 



Two aspects of the Stanford courtyard made it an interesting 
choice for a VideoMap.  In particular, the courtyard had a rich set 
of paths, including several intersections where six paths meet.   
This was useful for prototyping a navigation interface, and had the 
added benefit in more navigational choices for the user, and thus a 
more interesting VideoMap.  Additionally, because the video was 
shot along just those paths a person would normally walk, the 
choices of where to go was enhanced by the visible paths. 
 

4.4 Lake Tahoe 
We produced a VideoMap from a drive along the western side of 
Lake Tahoe.  The video was shot on a Monday in late August.   
We started in Tahoe City around 11am, and drove south to 
Stateline, collecting about 90 minutes of video. The camera was 
mounted on a tripod extended from the sunroof of a compact car.  
A GPS unit was used to record spatial metadata on a laptop 
computer. In hindsight, it might have been better to drive in the 

opposite direction so that the vehicle was closer to the guardrail. 
This would have improved the camera views overlooking the lake. 
 
The Tahoe VideoMap covers a large enough area that a multiscale 
interface is valuable. Figure 3 shows a large-scale view that 
includes the entire lake as well as the path around it.  The red 
‘you-are-here’ marker can be dragged along the path, moving the 
view along the drive. Precise viewpoint positioning is difficult 
with a map at this scale. A ‘zoomed in’ map can be chosen for a 
given region, which is more useful for precise navigation.  
Zooming and re-centering are controlled by a popup menu over 
the applet showing the map. The maps are retrieved as needed 
from a web based map provider. [20] Figure 9 shows a map 
expanded to just the Emerald Bay region. We also added text 
hyperlinks to Tahoe VideoMap that allow movement to 
preselected places. These links were added manually but could 
easily be extracted from GIS database. 
 
 

 
 

Figure 9. VideoMap of Emerald Bay. 

A web based VideoMap of Emerald Bay in Lake Tahoe, California. The upper right window displays the current view, 
and may be controlled by mouse or keyboard actions. The map at left shows available paths, and indicates the current 
position and view direction. The text display in the bottom frame provides information about the current view, and can 
also be used to control navigation via hyperlinks. 

 



5. DISCUSSION & FUTURE DIRECTIONS 
 
We have experimented with several different VideoMaps and 
features of the FlyAbout system. From our initial experiments, it 
seems that VideoMaps are well suited to “virtual visits” of remote 
locations. Because they are spatially rather than temporally based, 
they are not appropriate for capturing activities.  Obvious 
VideoMap applications are travel and tourism, real estate, or 
documenting interesting spaces like museums, scenic areas, or any 
places with scenic or educational value. 
 
There is no inherent reason that VideoMaps could not be 
produced for entire cities or regions, and integrated with other 
VideoMaps at any scale. For example a more comprehensive 
VideoMap of Lake Tahoe could allow tourists to virtually drive to 
one or more hotels or resort destinations, and then to walk through 
those resorts to view their grounds and amenities. Capturing all 
streets of an entire city is certainly feasible, and the navigational 
abilities of a VideoMap would let users virtually drive any desired 
route. We plan to build applications which will help us better 
understand what capabilities are needed for large and multiscale 
VideoMaps. 
 
We are also improving the VideoMap interface in a number of 
ways; for example direct integration with spatial databases or GIS 
data. It is straightforward to add navigational features, such as 
automatically generated routes for virtual tours. Integrating this 
with a mapping service could provide a VideoMap preview of 
driving directions to a chosen destination, showing what turns and 
landmarks would look like en route. 
 
The VideoMap interface is capable of more advanced interaction.  
For example, users could select objects in the video view and get 
text information about them, see their locations on the spatial 
map, or move their viewpoint close to those objects. On the 
production side, we are in the process of building a six camera 
FlyCam for higher image quality VideoMaps, and are working on 
image processing methods for automatic generation of spatial 
metadata. 

6. CONCLUSION 
In conclusion, we have presented a spatial capture that is far more 
interactive than existing panoramic imaging systems, yet is far 
more practical than a complete 3D rendering solution. Few other 
approaches are lightweight enough to give a similar sense of 
presence over the Web, or scalable enough to cover large and 
dense geographical areas. Letting the user choose location and 
view, and direction at intersections gives an immersive and 
interactive component that is not present in static panoramas, even 
of motion video. In addition, integrating spatial location with the 
time index automatically makes the system "object-centric" from 
spatial metadata. This allows the panoramic images to be accessed 
by object, rather than by time index or spatial location, which 
removes a significant navigational burden from the user. An 
object can be viewed simply by clicking on its map 
representation, rather than by having to find and specify its time 
location and view direction in the panoramic video. 
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