
FlyAbout: Spatially Indexed Panoramic Video
Don Kimber

FX Palo Alto Laboratory, Inc.
3400 Hillview Ave. Bldg 4

Palo Alto, CA 94304

kimber@pal.xerox.com

Jonathan Foote
FX Palo Alto Laboratory, Inc.

3400 Hillview Ave. Bldg 4
Palo Alto, CA 94304

foote@pal.xerox.com

Surapong Lertsithichai
Harvard Design School

48 Quincy Street
Cambridge, MA 02138

surapong@post.harvard.edu

ABSTRACT
We describe a system called FlyAbout which uses spatially
indexed panoramic video for virtual reality applications.
Panoramic video is captured by moving a 360° camera along
continuous paths. Users can interactively replay the video with the
ability to view any interesting object or choose a particular
direction. Spatially indexed video gives the ability to travel along
paths or roads with a map-like interface. At junctions, or
intersection points, users can chose which path to follow as well
as which direction to look, allowing interaction not available with
conventional video. Combining the spatial index with a spatial
database of maps or objects allows users to navigate to specific
locations or interactively inspect particular objects.

Keywords
Panoramic video, spatial databases, video maps, interactive video,
virtual reality

1. INTRODUCTION

There have been many attempts to recreate the experience of
being in a particular place. Traditionally, this was done only
through art and descriptive prose. The invention of photography
provided a great step forward in the ease and accuracy with which
places could be depicted. Motion pictures and video recording
provided another important improvement. However, photographs
or motion pictures are inherently passive media. They provide the
user with particular views of the space, but only those chosen by
the photographer or cinematographer in advance. The end user has
no control over what is seen and when. Even if video is panned
through different views from a given point, or is taken in motion
along some path, the user’s experience is of ‘going along for the
ride’, but not of choosing where to go or to where to look on that
ride.

Ideally, reconstructing the experience of ‘being there’ would
allow the user to freely move around, and choose where to look.
One approach to this requires a computer model of the space, and
real time view rendering as a user virtually navigates through the
space [1]. In most cases this approach is limited by the fidelity of
the underlying 3D model, and cannot provide photorealistic views

of the space even with computationally expensive rendering
techniques. A promising recent approach is to record sufficient
image data to approximate the flow of light in any direction and
through any point in the space. This allows a view to be
constructed for any particular position. Image data is represented
in structures called “light fields” [2] or “lumigraphs” [3].
However, representing this data requires capturing four-
dimensional images, which is prohibitively expensive to record
and store for most practical cases.

Two image-based approaches have been developed which
partially address the problem. One is panoramic imagery, which
allows a user to freely chose which direction to gaze from a fixed
point of view. Examples include Quicktime [4], IPIX [6], and
BeHere [15]. Another approach is to associate video with paths
the user may follow, or images with points along those paths [11].
FlyAbout combines these approaches, by associating panoramic
images with points along spatial paths. The result is spatially
indexed panoramic video. Though recording panoramic images at
many finely spaced points could approximate it, in practice it is
easier to record time-indexed panoramic video taken along one or
more paths.

In this paper, we describe FlyAbout, a lightweight system for
interactive navigation of a photorealistic representation of space.
The FlyAbout system offers immersive, interactive navigation of
a space without the expense of generating and rendering VR
models. Spatial images are captured in a new media type called a
VideoMap, which differs from conventional video in that it is
both panoramic and spatially indexed.

Table 1. Comparisons of Spatial Capture Technologies

Positional Degrees of Freedom:

View: 0 (discrete

points)
1 (paths) 2,3

Fixed Photographs
Aspen Project [11],

Views of Golden
Gate [16]

CG
rendered
images.

Panoramic
QTVR [4],

IPIX[6]
FlyAbout

CG based
VR,

Lightfields

Table 1 shows a conceptual map of various spatial capture
approaches. There is a gap between still panoramic images (look
anywhere from one point) and general 3D rendering (look
anywhere from any point). The FlyAbout system falls neatly
within that gap, allowing the user to look anywhere, but from a
limited—yet still rich—range of points. This is a very practical
compromise between viewpoint constraints and complexity. We
can offer the user an experience almost as good as a "fly
anywhere" system without the tremendous cost of capturing and
rendering a full 3D modeled environment.

2. RELATED WORK
A number of systems exist for panoramic still images. One of the
first systems in wide use was is QuickTime VR [4]. A more recent
approach is IPIX [14], where wide-angle still images are recorded,
and unwarped in a postprocessing step. BeHere delivers
panoramic video over the Internet via a wide-angle lens and a
streaming system [15]. None of these applications are spatially
indexed. Some work has been done with spatial indexing, but
without full seemless panoramic images presented as a continuous
stream. Examples are the artistic works by Michael Naimark
[13],[16], and the front, rear and side view images used in the
Aspen project [11]. DizzyCity.com provides multiple panoramic
views from New York City street corners (using IPIX images),
but does not permit motion along paths from point to point. The
work described in [11] also included images recorded with a
special panoramic lens, but requiring a special projection display
for viewing. In contrast, the work presented here combines
spatial indexing with full panoramic digital video. Previous work
also includes panoramic video recorded along interesting routes,
but the paradigm for presenting this to users has been traditional

time-based video [19]. Interesting work has also been done to
derive spatial map information from the panoramic image [10].

In researching this paper, we have found that Michael Naimark
and Andrew Lippman (among others) anticipated many FlyAbout
innovations in the Aspen project [11]. We acknowledge the
pioneering work done there, which is even more impressive given
the expensive and cumbersome analog video equipment of two
decades ago. In many ways, FlyAbout can be seen as a
lightweight, inexpensive, and updated reincarnation of that work.

3. THE FLYABOUT SYSTEM
The FlyAbout system captures panoramic video from a 360°
camera that is moved through a space of interest. The recorded
video is spatially indexed and presented through an interface we
call a VideoMap player. FlyAbout explicitly trades the time index
for a spatial index. Paths can be navigated through a VideoMap by
spatial relations such as “move forward” rather than the typical
“play, stop, rewind” metaphors of traditional temporal video.
Additionally, objects and locations can be inspected using a map-
like interface: clicking on a map item brings the view to that
particular location or object. The FlyAbout system displays both
the panoramic video and an integrated spatial map that indicates
the current viewpoint and gaze direction, as shown in Figure 1.
Figure 2 shows the architecture of the FlyAbout system that is
described in more detail below. A VideoMap may also contain
text information, as seen in Figure 3. Navigation may be
controlled through the panoramic video window, the spatial map,
or the text display.

Figure 1 FlyAbout Video Player with Map.

FlyAbout player for viewing Stanford courtyard. Virtual paths correspond to actual paths through the courtyard. Paths
are shown as red lines on map. The red circle indicates current view position, and protruding arrow indicates gaze
direction. A small “heads up display” map gives cues to the available navigational choices. Objects from a spatial
database are captioned in red on the image, at a location determined from the view angle and the object’s coordinates.

Audio

ImageViewer

MapViewer

TextViewer

Motion
Engine

Video, Audio,
Map, and Text
Data

Metadata

Figure 2. Overview of VideoMap Player.

VideoMap Player consisting of a motion engine and
multiple media players

A VideoMap is constructed by recording the panoramic video and
acquiring associated spatial metadata. The video is then processed
and indexed, and rendered by a motion engine and VideoMap
player. This allows users to virtually navigate the space. Section
3.1 describes VideoMap construction in greater detail.

3.1 Creating VideoMaps

Any panoramic camera can be used for recording VideoMaps,
provided it can capture a horizontal 360° field of view. Though
our VideoMaps could accommodate fully spherical panoramic
video, we currently use a cylindrical projection in which views of
the zenith and nadir are not available. This is for usability as well
as practical reasons: there is typically little interest in viewing the
sky or floor. Also the practical problems of capturing a fully
spherical panoramic view should be obvious: where do you put
the tripod, (let alone the videographers), so the view is not
obstructed? Current panoramic camera designs include those
based on wide-angle lenses [6],[15] mirrors [5] or multiple
cameras [7],[9]. We used “FlyCam,” a 4-camera 360° system
developed at our laboratory [17], and shown in Figure 4. Because
a FlyCam is compact and lightweight (only a few pounds,
including mounting) it is relatively easy to rig various mobile
camera platforms, including a dolly for indoor locations and
outdoor footpaths, as well as a vehicle-mounted platform for
roads. A car with a sunroof was especially handy for the latter.
Four streams of video, one from each camera, were captured on
four separate DV camcorders. (Though not essential, a fifth video

Figure 3. VideoMap Web Interface.

A web based VideoMap of Lake Tahoe, California. The upper right window displays the current view, which may be
controlled by mouse or keyboard. The map at left shows available paths in red, and indicates the current position with a
dot. The bottom frame provides information about the current view, and can also be used to control navigation via text
hyperlinks.

stream was also recorded, having a reduced-resolution camera
image in each quadrant produced by a quad processor. This last
stream was useful for several purposes: synchronization, sanity-
checking, and to produce a reduced-resolution VideoMap.)

Figure 4. FlyCam used for Panoramic Recording.

When using a multiple-camera panoramic imaging system such as
FlyCam, the multiple video streams must be synchronized.
Several methods of synchronization are possible, including free-
running, where the video recordings are not synchronized. Free-
run recordings are synchronized in postproduction by finding a
common start time, for example using a camera flash visible in all
cameras. Though the individual time bases might drift, in practice
they are stable enough to be nearly frame-accurate for recordings
of an hour or less. Alternatively, recordings may be synchronized
using a timecode generator, either on the audio track or as part of
the recorder transport. Another alternative is to synchronize the
time base of the video cameras using either “genlocking” or a
time base corrector, and finding a common start frame. In this
case all recordings will be frame-accurate with respect to each
other. For our most recent recordings, we write SMTPE timecode
on one audio track for each video recording, and those timecodes
are used in postproduction to synchronize frames.

Spatial metadata is acquired in concert with the panoramic video,
describing the spatial location of the camera at any given moment.
This can easily be done using available Global Positioning
Satellite (GPS) equipment or any of a number of other methods.
Relevant text may also be collected and marked with either time
or, equivalently, position. During playback, this metadata assists
navigation by displaying spatial location on a generated map, or is
integrated with an existing map or spatial database. Relevant text
or hyperlinks can be displayed at the appropriate positions or
views. Map data may be taken from existing maps, aerial
photographs, spatial databases, or other available images, for
example a building floorplan. Given GPS or similarly accurate
spatial data, a simple map of the camera paths can be rendered
directly from the data.

Camera paths are conveniently represented as data tuples of the
form (x,y,a,t) where x and y are the location of the camera, a is the
orientation angle of the camera, and t is the time. (Height (z) data
can also be captured if relevant). Such a tuple could be given for
every frame of video, however, assuming the camera motion is
relatively smooth, a much smaller number of tuples can be

provided, and linear interpolation can be used to estimate camera
position and orientation at intermediate points. Spatial sensors,
such as a GPS unit, may produce the spatial metadata
automatically. Other sources of spatial data include radio beacons
or dead reckoning from acceleration or vehicle speed and heading
sensors. Alternatively, spatial data could be produced by image
processing of the panoramic images, for example by using
triangulation from known points to determine camera position. In
simple cases, it is feasible to produce the spatial metadata by
hand, given a map, known paths, and landmarks visible in the
video. In the absence of specific position data from external
sources, position estimates can be derived from analysis of the
panoramic video data. The speed and heading of camera motion
can be estimated from analysis of “optical flow” in the image
[12].

Ideally, the panoramic video should be collected when there are
no people or other objects moving through the space. These
objects will appear to move backwards when the video path is
traversed in a direction opposite to the direction it was captured
in. However, if the camera is moved slowly, so that many images
are available for any given position, a median filter or other image
processing could be used to eliminate the transient objects.
Alternatively, a single path can be captured in both directions;
during playback the one with the same direction of travel is
displayed to the user.

3.2 Rendering & Motion Engine
In multiple camera systems such as FlyCam, the recorded video
streams must be stitched together before they can be presented as
a smoothly pan-able virtual view. In our FlyCam system this is
done by first mapping each camera view, modeled as a
perspective projection (like a pinhole camera), onto a portion of a
cylinder. The details of this procedure can be found in [17]. In the
cylindrical projection, the images from adjacent cameras overlap
slightly; cross fading these regions make camera border artifacts
less conspicuous. Though the FlyCam system can do this
processing in real time, it is done off-line for creating Video Maps
which need not be available in real time.

Offline, video from the DV camcorders are uploaded as AVI files
over a FireWire interface. The resolution of the images is
720x480. The multiple AVI files are rendered into a motion jpeg
file that contains a complete 2400x480 panoramic image for each
time frame. (The horizontal image resolution is somewhat less
than 4 X 720 because of image overlap.) During playback, the
selected view is cropped from the full panorama. Naïve cropping
results in distortions as the cylindrical projection is mapped onto a
planar display: straight lines will appear curved. It is
straightforward to map the cylindrical projection back to a
perspective representation so that straight lines, such as building
edges, appear straight. However, we find that a cylindrical
projection is often not objectionable, particularly while viewing
natural outdoor locations where there are few straight lines.

Because the VideoMap interface of FlyAbout is spatially rather
than temporally oriented, a core component of the system is a
‘motion engine’. In traditional video, including panoramic video,
frame images are ordered by time, and motion corresponds to
increasing time. A typical interface for a panoramic video
appliance has primitives like:

Interface VideoController {
 Play(speed); // in seconds per second
 Stop();
 SeekToTime(time);
 GetCurrentTime();
 SetGazeDirection(angle);
 SetFieldOfView(angle);
};

Video frames are sent to a display, and this interface can be used
to control the speed, or position of the video. A speed of unity
means the video is played at normal speed, but other speeds could
be used to play at multiples of real time, including fast-forward,
slow motion, or even reverse for negative values. The interface
also allows the view direction and degree of zoom to be changed.

The FlyAbout controller sends frames to a display in a similar
manner, but is spatially based. Rather than playing video by
moving forward in time, video is played by moving along a path
at some velocity. The interface looks something like this:

Interface FlyAboutController {
 Move(speed, navigationInfo);
 // speed in meters/sec
 Stop();
 MoveAhead(distance, navigationInfo);
 MoveTo(position);
 GetCurrentPosition();
 SetGazeDirection(angle);
 SetFieldOfView(angle);
};

The Move function indicates motion along the current path at a
given speed. The NavigationInfo structure specifies
parameters that control the subtleties of navigation. For example,
it indicates the preferred direction, and what to do when an
intersection is reached. The default rule is that motion always
proceeds in the direction closest to the preferred direction.
NavigationInfo can also specify a mode in which the
preferred direction is updated to match the forward direction
along the path. This means that motion will always be as ‘straight
as possible’, and when an intersection is reached, the path chosen
will be the path as close as possible to current direction.

The FlyAbout controller consists of a motion engine, which
continually updates its viewpoint and gaze direction based on the
current motion and navigational input. The controller maps
positional information back to temporal information, using the
spatial index to get the actual time-based video frames.

3.3 Displaying FlyAbout Video

Presenting a VideoMap to the user can be done in a number of
ways. However, a naïve playback of the full panorama is not
particularly useful, and in fact can be counterintuitive. When
displayed on a conventional planar display, an unwrapped
cylindrical panoramic image is not easy to interpret, especially
when moving: one quadrant of the image appears to be
approaching, one receding, and the other two moving past in
opposite directions.

We prefer to display a virtual view towards a particular direction,
by cropping the cylindrical panorama to a normal aspect ratio and
mapping to a planar projection. The user may then change their
view direction to pan around the full panoramic image, and may
also choose to zoom in or out. For a more compelling experience,
a large virtual view can be displayed on a plasma or projection
screen. The FlyAbout architecture allows multiple simultaneous
views from the same point. So two or more large displays in a
room could present multiple virtual views at a fixed relative angle,
for example to simulate multiple windows on a vehicle. We have
also implemented FlyAbout playback using a head mounted
display, with a head tracker used to control the gaze direction.
This gives a photorealistic, immersive “virtual reality” experience.

3.4 VideoMap Player
Our primary user interface is a VideoMap Player that displays the
cropped panorama alongside a spatial map (as shown in Figure 1).
The map indicates the users viewpoint and gaze direction;
clicking on the map is one way to navigate. Our system supports
VideoMaps in a standalone player as in Figure 1, or as a dynamic
web page, as shown in Figure 3. In addition to the video and map
windows, text links can also be included. Navigation can then be
controlled using video, map, or text.

Dragging the mouse in the video window controls gaze direction,
and together with keyboard commands can control forward or
backward motion. We have experimented with a variety of
interface configurations, and have found that using mouse
dragging to control gaze, and arrow keys to control motion, is
adequate in many cases. Key commands can also be given to stop
or reverse direction. Mouse dragging together with the shift key,
can be used to precisely control motion or speed. We have
implemented a joystick control, in which the joystick is moved in
the direction of desired motion, and rotation of the joystick is used
to rotate gaze direction. Alternatively the mouse can be used in
the map window to drag the location (indicated by a ‘you-are-
here’ dot) or gaze direction. Popup menus in the map window
can be used to move the view as near as possible to a selected
location. Clicking on map objects can also move the gaze
direction to that object.

Text can also provide additional information to the user. As the
viewpoint moves, the text display can be updated to provide
descriptive text. Conversely, text hyperlinks can change position
or gaze direction. Links may be extracted from a GIS database,
for example to indicate locations of nearby hotels. A text link to a
particular hotel could move the viewpoint to a position near that
hotel. Additionally, a URL can be generated at any time for the
current viewpoint and used to ‘bookmark’ points of interest.

Figure 2 shows the basic player structure, where the motion
engine, display, and UI are all implemented as one program in a
single address space. This system has been implemented and can
render VideoMaps stored on a local hard drive, CD or DVD. A
networked FlyAbout system has also been implemented, where
the VideoMap is presented in a web browser, as shown in Figure
3. In the current implementation, panorama images are updated
by server push. A streaming video format could be used as well,
although the buffering must be kept small enough so that latency
does not ruin the sense of interactivity. The map viewer is
implemented as a Java applet. A simple HTTP protocol controls
the motion engine by sending HTTP GET requests with special

control URLs. This allows the interface to be controlled by any
number of sources, for example a Java applet, links in an HTML
page, or by any other device or system that can generate HTTP
requests.

Figure 5. Web based VideoMap.

The FlyAbout HTTP Server. The client browser image is
updated by server push, and the client’s interactive map
viewer is implemented as Java applet. Text associated
with the current location is displayed in another frame.

3.5 Navigating VideoMaps
When viewing VideoMaps, users may control their motion in
addition to controlling the gaze direction. On any given path, the
user may move in either of two directions along the path, and may
control the speed. We are experimenting with a variety of
navigation controls such as a mouse, a joystick, and pedals. When
motion brings the view position to a path intersection, users may
indicate which of the several paths they will take. There are a
variety of possible interfaces, for example “left, right, straight”
buttons that are activated when there is a directional choice to be
made. For some applications, the user can control the direction of
motion independently of the gaze direction. This is useful when
examining a particular object by navigating around it. In this case,
controls can allow the user to “snap” the gaze to a particular
object, such as a sculpture or building, so that it is in constant
view as the user moves around it. This latter feature is particularly
useful in situations such as a sculpture garden or car sales lot
where objects, rather than the scenery or paths, are the interesting
points.

In most applications, there is no real need for completely
independent path direction and gaze direction control. A simpler
approach is to use the gaze direction as the preferred direction at
an intersection. When motion brings the view position to an
intersection, the path closest to the current view direction is
chosen. Another simplified navigation mode uses the current
direction of motion as the preferred direction. In this case the rule
is to go as ‘straight as possible’ at an intersection. This can be
useful for a ‘hands off’ tour in which the motion proceeds
continuously along a path.

It is important for the user to be aware of navigational choices, in
particular where intersections are located and the paths available
from them. In many cases this may be obvious from the view. For
example, if the VideoMap is collected along roads or obvious
paths, then it should be made clear to the user where they may
turn onto an alternate path or if they are constrained to a single
path. (For example in the courtyard shown in Figure 1, the paths
available for virtual navigation match the footpaths through the
courtyard and are clearly visible in the video.) However, it is not
obvious what paths are available in the absence of visual cues.
Also, for footage collected along a road or driveway, some
turnoffs or driveways may not be accessible. In these cases, the
user could determine their choices by consulting a map interface,
as in Figure 3. However consulting a map may distract from the
immersive experience. An alternative is to show a small map
segment oriented to the users current gaze direction. This can be
seen in the bottom right corner of Figure 1

Another useful function is to allow the user to specify an object or
location to look at rather than a specific direction. As the user
moves around various paths, their gaze remains fixed on the
object. We have implemented this as a ‘focus’ location that can
be set to any point in the map. This makes it easy to view an
object from any position. This functionality is similar to “object
movies” of QuickTime VR, which provide views of a single
object from multiple directions. However, unlike object movies, it
is not necessary to carefully point the camera at the object when
the video is collected. Furthermore, some path segments may be
used as part of the paths for navigating around more than one
object. This functionally is particularly useful for e-commerce or
other applications, for example in a car sales lot. If cars are
arranged in a grid, then capturing FlyAbout video along all grid
borders then lets the FlyAbout system automatically generate a
view of any car from any angle.

A particularly powerful aspect of this system is the ease with
which hyperlinks can be made between video images and spatial
objects. When integrated with a spatial database of object
coordinates, it is simple geometry to find the best location and
gaze direction to view any object. Thus clicking on a map object
can bring up a view, or in reverse, it is easy to answer the question
“what am I looking at” by finding the closest object to the gaze
vector. An ultimate application of this is to automatically annotate
the video image, for example by overlaying text as in Figure 1,
where the Rodin sculptures are indicated.

4. EXAMPLE VIDEO MAPS

We have experimentally produced several VideoMaps for a
variety of different spaces and paths including a conference room,
an outdoor courtyard and indoor lobby, a courtyard at Stanford
University with a number of intersecting paths, and a highway
around Lake Tahoe, California.

4.1 Kumo Conference Room

We produced our first VideoMap of a conference room at our
laboratory. The camera was mounted on a dolly with swivel
wheels, so we were able to keep the camera orientation constant
as a total of two minutes of video was collected. This web based
VideoMap is shown in Figure 6. The room map used was a top
view of a 3D room model that had been derived from an
architectural blueprint.

ImageView

MapViewer

TextViewer

Motion
Engine

Video,
Audio, Map,
Text Data

Metadata

Web Browser

FlyAbout Server

HTTP

Servers(s)

4.2 Courtyard with Fountain
The first outdoor VideoMap we produced was along a path around
a fountain on Xerox campus in Palo Alto. About 5 minutes of
video was collected, again with a constant camera orientation.
Chosen paths included some that went up stairs, and also a short
segment entering and exiting the lobby of a building. Capturing
paths along stairways required more teamwork then ingenuity:
two people lifted the camera dolly and climbed the stairs as
smoothly as possible. Figure 7 shows the VideoMap; the view
location is at the fountain viewing the main building. Figure 8
shows the same VideoMap, although here the view is at the lobby
entrance. The two different views are reflected in the different
view location of the two maps.

4.3 Stanford Courtyard
We produced a VideoMap of a courtyard adjacent to the Main
Quad on the Stanford campus. Our first attempt, on a busy
Saturday, was hampered by too many visitors. Seeking a less
crowded time, our next attempt was during a morning hour;
however the low angle of the sun caused objectionable artifacts
when directly in the camera view. (This is a general problem with
panoramic imaging of any type.) We had best success at a mid
morning on a weekday; a view of the resulting VideoMap was
shown in Figure 1. The courtyard has a number of paved paths
across a lawn, and we collected video along each of the paths, for
a total of about 15 minutes of video taken in four shots. The paths
were paved with brick, causing some shaking of the camera. The
effect during playback is not completely objectionable, and
suggests walking rather than smooth motion or extreme shaking.

Figure 6. VideoMap of Conference Room.

Figure 7. FlyAbout VideoMap of Courtyard.

Figure 8. VideoMap of Courtyard.

Two aspects of the Stanford courtyard made it an interesting
choice for a VideoMap. In particular, the courtyard had a rich set
of paths, including several intersections where six paths meet.
This was useful for prototyping a navigation interface, and had the
added benefit in more navigational choices for the user, and thus a
more interesting VideoMap. Additionally, because the video was
shot along just those paths a person would normally walk, the
choices of where to go was enhanced by the visible paths.

4.4 Lake Tahoe
We produced a VideoMap from a drive along the western side of
Lake Tahoe. The video was shot on a Monday in late August.
We started in Tahoe City around 11am, and drove south to
Stateline, collecting about 90 minutes of video. The camera was
mounted on a tripod extended from the sunroof of a compact car.
A GPS unit was used to record spatial metadata on a laptop
computer. In hindsight, it might have been better to drive in the

opposite direction so that the vehicle was closer to the guardrail.
This would have improved the camera views overlooking the lake.

The Tahoe VideoMap covers a large enough area that a multiscale
interface is valuable. Figure 3 shows a large-scale view that
includes the entire lake as well as the path around it. The red
‘you-are-here’ marker can be dragged along the path, moving the
view along the drive. Precise viewpoint positioning is difficult
with a map at this scale. A ‘zoomed in’ map can be chosen for a
given region, which is more useful for precise navigation.
Zooming and re-centering are controlled by a popup menu over
the applet showing the map. The maps are retrieved as needed
from a web based map provider. [20] Figure 9 shows a map
expanded to just the Emerald Bay region. We also added text
hyperlinks to Tahoe VideoMap that allow movement to
preselected places. These links were added manually but could
easily be extracted from GIS database.

Figure 9. VideoMap of Emerald Bay.

A web based VideoMap of Emerald Bay in Lake Tahoe, California. The upper right window displays the current view,
and may be controlled by mouse or keyboard actions. The map at left shows available paths, and indicates the current
position and view direction. The text display in the bottom frame provides information about the current view, and can
also be used to control navigation via hyperlinks.

5. DISCUSSION & FUTURE DIRECTIONS

We have experimented with several different VideoMaps and
features of the FlyAbout system. From our initial experiments, it
seems that VideoMaps are well suited to “virtual visits” of remote
locations. Because they are spatially rather than temporally based,
they are not appropriate for capturing activities. Obvious
VideoMap applications are travel and tourism, real estate, or
documenting interesting spaces like museums, scenic areas, or any
places with scenic or educational value.

There is no inherent reason that VideoMaps could not be
produced for entire cities or regions, and integrated with other
VideoMaps at any scale. For example a more comprehensive
VideoMap of Lake Tahoe could allow tourists to virtually drive to
one or more hotels or resort destinations, and then to walk through
those resorts to view their grounds and amenities. Capturing all
streets of an entire city is certainly feasible, and the navigational
abilities of a VideoMap would let users virtually drive any desired
route. We plan to build applications which will help us better
understand what capabilities are needed for large and multiscale
VideoMaps.

We are also improving the VideoMap interface in a number of
ways; for example direct integration with spatial databases or GIS
data. It is straightforward to add navigational features, such as
automatically generated routes for virtual tours. Integrating this
with a mapping service could provide a VideoMap preview of
driving directions to a chosen destination, showing what turns and
landmarks would look like en route.

The VideoMap interface is capable of more advanced interaction.
For example, users could select objects in the video view and get
text information about them, see their locations on the spatial
map, or move their viewpoint close to those objects. On the
production side, we are in the process of building a six camera
FlyCam for higher image quality VideoMaps, and are working on
image processing methods for automatic generation of spatial
metadata.

6. CONCLUSION
In conclusion, we have presented a spatial capture that is far more
interactive than existing panoramic imaging systems, yet is far
more practical than a complete 3D rendering solution. Few other
approaches are lightweight enough to give a similar sense of
presence over the Web, or scalable enough to cover large and
dense geographical areas. Letting the user choose location and
view, and direction at intersections gives an immersive and
interactive component that is not present in static panoramas, even
of motion video. In addition, integrating spatial location with the
time index automatically makes the system "object-centric" from
spatial metadata. This allows the panoramic images to be accessed
by object, rather than by time index or spatial location, which
removes a significant navigational burden from the user. An
object can be viewed simply by clicking on its map
representation, rather than by having to find and specify its time
location and view direction in the panoramic video.

7. REFERENCES
[1] H. Rheingold, Virtual Reality, N.Y.: Summit, 1991.

[2] M. Levoy and P. Hanrahan. Light field rendering. In
Proc. SIGGRAPH ’96.,1996.

[3] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F.
Cohen, "The Lumigraph," in Proc. SIGGRAPH’96, pp.
43-54, 1996.

[4] S. Chen and L. Williams, “View Interpolation for
Image Synthesis.” Proc.SIGGRAPH’93, pages 279-
288, August 1993.

[5] S. K. Nayar. “Catadioptric Omnidirectional Video
Camera.” In Computer Vision and Pattern
Recognition, pages 482–488, June 1997.

[6] IPIX, the Interactive Pictures Corporation,
http://www.ipix.com

[7] M. Nicolescu and G. Medioni , “Electronic Pan-Tilt-
Zoom: A Solution for Intelligent Room Systems,” in
Proc. IEEE International Conference on Multimedia
and Expo, August 2000.

[8] FullView wide-field panoramic camera,
http://www.panoramtech.com/product2000/sources/FV
360.htm

[9] Immersive Media, http://www.immersivemedia.com

[10] H. Kawasaki, K. Ikeuchi, M. Sakauchi, “Automatic 3D
City construction System using Omni Camera,” in
Proc. IEEE International Conference on Multimedia
and Expo, August 2000.

[11] A. Lippman, "Movie-Maps: An Application of the
Optical Videodisk to Computer Graphics" Computer
Graphics 14(3), July 1980

[12] S. Beauchemin and J. Barron. The computation of
Optical Flow. ACM Computing Surveys, Vol. 27, No.
3, 1995.

[13] M. Naimark, "VBK - A Moviemap of Karlsruhe", in:
Tommorrow's Realities – In Proc. SIGGRAPH '91, Las
Vegas 1991

[14] IPIX Corporation. http://www.ipix.com .

[15] BeHere Corporation. http://www.behere.com .

[16] M. Naimark, “Views of the Golden Gate”, Exhibit at
the Exploratorium, San Francisco, Fall 2000.

[17] J. Foote and D. Kimber: “FlyCam: Practical Panoramic
Video,” in Proc. IEEE International Conference on
Multimedia and Expo, vol. III, pp. 1419-1422, August
2000.

[18] DizzyCity Corporation. http://www.dizzycity.com

[19] T. Pintaric and U. Neumann. “Demonstration of
Immersive Panoramic Video,” ACM Multimedia 2000,
Los Angeles.

[20] Mapquest.com, Inc. http://www.mapquest.com

