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Abstract

The problem of audio information retrieval is familiar to anyone who has returned

from vacation to �nd an answering machine full of messages. While there is not yet an
\AltaVista" for the audio data type, many workers are �nding ways to automatically

locate, index, and browse audio using recent advances in speech recognition and ma-

chine listening. This paper reviews the state-of-the-art in audio information retrieval,
and presents recent advances in automatic speech recognition, word spotting, speaker

and music identi�cation, and audio similarity with a view towards making audio less

\opaque." A special section addresses intelligent interfaces for navigating and brows-
ing audio and multimedia documents, using automatically-derived information to go

beyond the tape recorder metaphor.

1 Introduction

The problem of audio information retrieval is familiar to anyone who has returned from
vacation to �nd an answering machine full of messages. If you are not fortunate, you may
have to listen to the entire tape to �nd the urgent one from your boss. Determining there
is no such message is guaranteed to be time-consuming.

While there is not yet an \AltaVista" for the audio data type, many workers are �nding
ways to automatically locate, manipulate, skim, browse, and index audio using recent ad-
vances in speech recognition and machine listening. Such methods will be indispensable to
cope with the burgeoning amounts of audio available both on the Internet and elsewhere.
(One German site1 advertises more than three days' worth of available audio).

This paper will attempt to link a variety of research e�orts across many �elds, at a level
of detail suitable for the non-specialist. A full list of references and URL pointers is given
for the interested reader. The focus here will be on systems that can automatically extract
information from an audio signal, rather than approaches that depend on human-generated

1http://www.icf.de/RIS/
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annotations or decisions. (See, for example, the music recommendation service of Fire
y2 as
an example of the latter). Because of the wide variety of disciplines involved, from speech
recognition, information retrieval, audio analysis, signal processing, psychoacoustics, and
machine learning, it is di�cult to include all pertinent work, for which I must apologize in
advance3.

1.1 Technologies

A variety of technological advances can be used to make audio less \opaque," that is, provide
some insight into the content of an audio �le, and perhaps ways of using it as other than a
monolithic block of digital data. The available methods can be roughly divided into those
that assume some speech content in the audio, and those that don't. The general outline of
this paper will follow this division; Section 2 will consider approaches based on automatic
speech recognition (ASR), while Section 3 will consider more general audio analysis suitable
for a wider range of audio such as music or sound e�ects (while not excluding speech).
This parallels Smoliar et alia's classi�cation of multimedia retrieval into \expression" and
\semantic" approaches [1]. In the �rst, objects are retrieved by some physical description, or
an example from a similarmedium. Thus most content-based image retrieval systems require
an image or sketch as a search query. The second approach requires some semantic analysis
or knowledge, for example annotations or picture captions. While semantic retrieval is
perhaps the ideal, as it would hopefully retrieve what an intelligent human would, it requires
either intensive human-assisted annotations or impractically sophisticated automatic content
analysis (imagine the di�culty of automatically �nding a photo of, say, Martin Luther
King in a large database of uncaptioned images). Recent advances in ASR, however, have
yielded audio retrieval systems that may approach the semantic ideal, as they can actually
recognize|if not understand|the words uttered in an audio stream. Thus it is entirely
possible to automatically locate audio of someone talking about Martin Luther King, or
indeed one of his speeches.

InformationRetrieval Conventional InformationRetrieval (IR) research has been mainly
based on (computer-readable) text ([2, 3]), and is familiar to many through the popular web
search engines such as Lycos or AltaVista. The classic IR problem is to locate desired text
documents using a search query consisting of a number of keywords. Typically, matching
documents are found by locating query keywords within them. If a document has a high
number of query terms, it is regarded as being more \relevant" to the query than other
documents with fewer or no query terms. Documents can then be ranked by relevance and
presented to the user for further exploration, as the web search engines do. Though power-
ful IR algorithms are available for text, it is clear that for audio, or multimedia in general,
common term-matching approaches are useless due to the simple lack of identi�able words
(or comparable entities) in audio documents. The problem becomes even more open-ended
when one considers audio, such as music, which may have no speech.

Even when a desired audio document can be located in a large archive, another problem
to overcome is the linearity of audio �les. To ensure that nothing important is missed,
the entire audio �le must be auditioned from start to �nish, which takes signi�cant time.
In contrast, the transcription of a minute-long message is typically a paragraph of text,

2http://www.�re
y.com
3In particular, though there is much interesting work in the �elds of psychoacoustics and Auditory Scene

Analysis, I must reluctantly consider them as beyond the scope of this overview.
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which may be scanned by eye in a matter of seconds. Even if there is a \fast-forward"
button it is generally a hit-or-miss operation to �nd a desired section in a lengthy �le. A
typical interface treats audio as an undi�erentiated stream: the \tape recorder" metaphor
(with stop, play, rewind and fast-forward buttons) is ubiquitous. In contrast, most text-
processing software has a \�nd" command that does simple string-match word searching
to locate desired information in large �les. Besides a scroll bar, many word processors can
scroll by paragraph, page, function, or chapter. As above, an audio interface of similar

exibility is impossible unless suitable indexing entities, analogous to \words" or \pages,"
can be located in the audio. Section 4 discusses approaches to precisely this problem.

Automatic Speech Recognition Automatic Speech Recognition (ASR) is a technology
rapidly coming out of the research laboratories into everyday use. While there have been
decades of hard e�ort on the task4, recent advances both in search algorithms and commonly-
available computing power are rapidly making ASR practical. A perfect ASR system that
could quickly transcribe spoken audio documents would be an ideal solution to most audio
indexing and retrieval tasks (at least for speech). Such a system would would essentially
reduce the audio retrieval problem to the straightforward text retrieval problem described
above.

2 Speech Recognition

Practically all ASR systems in use are based on hidden Markov models (HMMs) [4]. A
hidden Markov model is a statistical representation of a speech event like a word; model
parameters are typically trained on a large corpus of labeled speech data. Given a trained set
of HMMs, there exists an e�cient algorithm for �nding the most likely model sequence (the
recognized words), given unknown speech data. This approach has proved successful not
only for large-vocabulary recognition systems, but for \keyword-spotting" systems where
the location of only a few words or phrases is desired. Typically, this is done by training
HMMs for both the desired keywords and a \�ller" model that attempts to match everything
not a keyword [5, 6, 7]. Such systems can be both accurate and computationally far less
expensive than a large-vocabulary recognition system, while being 
exible enough to handle
unconstrained real-world speech [8].

Large-vocabulary recognition systems, in contrast, typically use a \sub-word" approach:
rather than building an explicit HMM for every one of the tens of thousands of words in the
vocabulary, a few hundred sub-word models are used, typically phonetically-based. Given a
phonetic dictionary, the appropriate sub-word models can be concatenated to form a word
model. For example, the word \right" could be constructed by concatenating the three sub-
word models for the phones \R AY T." In addition, a large-vocabulary system requires a
statistical \language model" that de�nes likely word combinations. For example, in English
the word bigram \of the" would be far more likely than the bigram \oaf the." The language
model can thus constrain the recognizer to word combinations that are more likely, and
hence more likely correct. To be useful, language models must be trained on example text
(typically millions of words) from a similar domain, which may be more practical for certain
domains such as news, where large corpora of newspaper text is available, than others such
as conversational speech.

4Aleksandr Solzhenitsyn's novel The First Circle (1968) describes speech recognition research in a Stalin-

era Soviet labor camp.
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A particular advantage of using ASR for audio information retrieval is that|unlike
dictation or voice-command tasks|most or all of the desired audio is already present, and
thus ASR can be performed o�-line rather than in real time. A disadvantage is that there
can be orders of magnitude more data to actually recognize, and an ASR system su�ciently
fast for dictation may be far too slow to use on hours of audio at search time.

The primary drawback of ASR systems is their limited accuracy. Though the best con-
tinuous speech recognition systems can achieve better than 90% word accuracy on carefully
recorded, limited-domain tasks such as the Wall Street Journal corpus [9], similar systems
achieve little better than 50% or 60% word accuracy on real-world tasks such as telephone
conversations or news broadcasts [10, 11, 12, 13]. Even though word accuracy rates might
appear unusably bad, the results of ASR transcription can still be surprisingly helpful for
information retrieval. The reason for this is as follows: even with a 50% word error rate, the
chance that a recognizer will miss every word in a three-word query (and thus a desired doc-

ument) is
�
1

2

�3
= :125, and will be even lower assuming more relevant documents have more

keyword occurrences. A similar e�ect has been termed \semantic co-occurrence �ltering"
[14]. Other approaches based on keyword spotting or subword units su�er similar problems.
A particular drawback of subword- or phonetic-based systems is the extreme di�culty in
correctly recognizing subword units such as phones. Information retrieval based on such
systems must be robust to recognition errors.

2.1 Keyword Spotting

Automatically detecting words or phrases in unconstrained speech is usually termed \word
spotting;" this technology is the foundation of several audio indexing e�orts from a number
of groups. A popular test is the SWITCHBOARD corpus5, which contains recordings of
spontaneous telephone conversations. Because recording subjects were asked to converse
about certain topics (e.g. pets, weather, gun control), several research groups attempted
to automatically determine the topic of each conversation. Workers at BBN have used
both large-vocabulary ASR and keyword spotting to investigate topic identi�cation [15].
Their approach allowed for a variable number of keywords, determined automatically; they
report results from using from 100 to 2500 keywords. Their system results in 88.3% topic
identi�cation accuracy (from among 10 topics) given both sides of a SWITCHBOARD
conversation are used.

A group at Ensigma used statistical models of keyword co-occurrence to discriminate
between radio news topics such as sports or weather, with very good accuracy [16, 17]. The
Video Mail Retrieval (VMR) group6 at Cambridge University (which included the author)
has investigated using 35 pre-selected keywords for audio information retrieval [18]. They
report retrieval accuracy near 90% of that obtainable from a perfect wordspotter. Kate
Knill, while at the Cambridge University Engineering Department, has been investigating
fast keyword spotting for hand-held PDAs [19].

2.2 Sub-word indexing

Large-vocabulary ASR for audio indexing su�ers, as we have seen, from several drawbacks: if
a word is not present in the phonetic dictionary, it will not be recognized. Also, a language
model must be used, and �nding su�cient example text may not be possible. Thirdly,

5http://morph.ldc.upenn.edu/ldc/news/newsletter/v1.2/Switch.html
6http://svr-www.eng.cam.ac.uk/Research/Projects/vmr/
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S: [um] IN DOCUMENTS, WHICH MIGHT BE video mail messages say, [pause]

R: AND IN DOCUMENT WHICH MIGHT BE THE DEAL MINISTRY IS A

S: [um] AND THAT will tell you WHICH ONES are relevant. You COULD compute

R: HOME AND THAT WOULD REVIEW WHICH ONES OF REVENUE COULD INCLUDE

S: SOME relevance score depending ON HOW CERTAIN you are of FINDING THEM

R: SOME OF ITS BOARD RULING ON HOW CERTAIN OF FINDINGS ON THEM

S: and so on. [pause] [um] [pause] ANOTHER APPROACH WOULD BE RATHER THAN

R: ANOTHER APPROACH WOULD BE RATHER THAN

S: have A SET OF [pause] distinct DOCUMENTS you HAVE might have ONE

R: A SET OF THIS THING DOCUMENT AND HAVE MUCH OF ONE

S: ongoing SOURCE OF [pause] SOUND SUCH AS [um] [pause] say a

R: ON GROWING SOURCE OF SOUND SUCH AS A HOME SO

S: news bulletin, [pause] BBC nine o'clock news or something on the

R: NEWSPRINT IN THE RECENT RESULTS AND

S: RADIO. [loud_breath] [um] [pause] AND THEN and YOU COULD [pause]

R: RADIO FIRM AND THEN YOU COULD

S: listen to THE WHOLE OF IT [um] [pause] AND if you suddenly spotted

R: LOSE INTO THE WHOLE OF ITS OWN AND A FEW SOUTHERN IS OFF TWO

S: [pause] [um] THE KEY WORD IN THAT [pause] [um] [pause] then then you

R: AND THE KEY WORD IN THAT FOUND THAT THE END TO

S: DECIDE that THE SURROUNDING AREA OF text, [pause] [um] I mean MAYBE

R: DECIDE OF THE SURROUNDING AREA OF TAX ON LINE MAY BE

Figure 1: Automatic transcription of spontaneous speech. S: spoken words (lower-case are
misrecognized words) R: recognized speech
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" ... cat ... "

Figure 2: Example phone lattice for utterance \cat"

large-vocabulary ASR may be very expensive in terms of computation and storage (though
recent advances in search algorithms are making this much less of a concern). Though
this may be acceptable for typical speech recognition applications such as dictation, it is
clearly unacceptable to incur several hours of computation when searching an audio corpus
of similar length. To avoid some of these drawbacks, several alternatives to large-vocabulary
ASR have been pursued. A common feature is the use of sub-word indexing units, such as
phones or phone clusters. Typically these are smaller than words, hence there are fewer
possible units, dramatically reducing the search space. An unfortunate drawback is that as
units get smaller the recognition accuracy will typically decrease as well. Saving the cost of
building a detailed language model will unfortunately impact recognition accuracy.

A group at ETH Z�urich7, has reported speech retrieval using a large set of automatically-
chosen vowel-consonant-vowel subword units as indexes [20, 21]. A recent paper from MIT's
Spoken Language Systems Group8 investigates a number of possible subword units, from
sequences of phones or broader phone classes, automatically-discovered phone \multigrams,"
to multiple-phone syllable units [22]. Retrieval performance is again related to recognition
accuracy; results show no clear bene�t of any particular unit, though some might be better
than others for certain domains.

Another promising approach is \lattice-based" word spotting. A lattice is a compact
representation of multiple best hypothesis generated by a phone or word recognition system.
If the phone lattice is generated before need, it can then be searched extremely rapidly to
�nd phone strings corresponding to desired query words. James reports the lattice scanner
approach working about 1000 times real time; in other words an hour of audio may be
searched in 3.6 seconds [23]. Figure 2 shows an example lattice for the word \cat." Keeping
multiple hypotheses makes the system much more robust to recognition errors. For example,
in the �gure, even though the phone \T" was not the �rst choice, it is still in the lattice, thus
the phone string K AE T can still be found. If the lattice contains too many hypotheses,

7http://www-ir.inf.ethz.ch/
8http://sls-www.lcs.mit.edu/
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Figure 3: PARC audio browser with speaker segmentation

however, recognition accuracy will su�er from too many false alarms, as words that were not
uttered can be found in a deep enough lattice. For example, the word \goat" (G OH T) can
be found in the lattice of Figure 2, even though the uttered word was presumably \cat." The
Video Mail Retrieval group at Cambridge University has successfully used phone lattices
for open-vocabulary voice message retrieval [24, 25]; other workers have investigated lattice-
based keyword spotting on the TIMIT corpus [26].

2.3 Large-vocabulary ASR

Several research groups have used large-vocabulary recognition for audio characterization.
Dragon Systems9 were perhaps the �rst to use large-vocabulary recognition for speech docu-
ment characterization; in 1993 they investigated topic identi�cation on the Switchboard cor-
pus [27]. A large e�ort is the Informedia project10 at Carnegie Mellon University. There, a
combination of verbatim text transcriptions and large-vocabulary recognizer output are used
for search indexes of video data such as television broadcasts [28] | Section 4.5 describes
the the Informedia project in more detail. The Video Mail Retrieval group at Cambridge
University has investigated combining small vocabulary keyword spotting (35 keywords)
with large-vocabulary ASR for voice mail retrieval. Their �ndings suggest that a combina-
tion of the two approaches can be superior to either alone, as the keyword spotting allows
detection of words not in the large-vocabulary lexicon [10]. Figure 1 shows the results of
using a 5,000-word large-vocabulary recognizer on a spontaneously-spoken video mail mes-
sage. Note that the language model is clearly inappropriate for the domain. Section 4.4
describes more about the VMR project.

2.4 Speaker Identi�cation

A somewhat easier proposition than speech recognition is to simply identify di�erences
between voices, rather than determine what the voices are saying. Technology to do this,
termed speaker identi�cation or speaker ID, can be very accurate in the right circumstances
[29]. The applications to audio indexing are immediate: work at Xerox PARC allowed
recorded meetings to be segmented and analyzed by speaker. A timeline display showed

9http://www.dragonsys.com/
10http://informedia.cs.cmu.edu/
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when particular speakers were talking during the meeting, as well as random-access to play
back a desired portion of the recording [30, 31]. Figure 3 shows how various speakers are
displayed versus time [32]. Note how non-speech audio events like silence and applause may
be located as well, which may be important cues for automatic segmentation.

A novel application of speaker ID was to align multi-hour recordings of the US House of
Representatives with the text transcription published as the Congressional Record. Because
the published text has been corrected and amended, it is often of interest to determine what
a given lawmaker actually said. By using a dynamic-programming approach to align the
audio record with the (di�ering) printed version, di�erent speaker turns can be accurately
located, adding much to the utility of the audio transcript [33].

Segmenting multimedia streams is a promising area for speaker identi�cation. If the ID
technique works well enough on a sub-second time scale, it could be used to detect speaker
changes in the soundtrack of a video or multimedia source, allowing it to be indexed and
some sort of structure (such as dialogs) to be determined. Wyse and Smoliar report a
\novelty measure" based on the cepstral di�erence between a short (.75 s) and long (3 s)
analysis window [34]. Di�erences are only compared in similar regions of the feature-space
to prevent intra-speaker variation (such as di�erent vowels) from generating a high novelty
score. When the di�erence exceeds a threshold, this can signal a new speaker or a signi�cant
change in the audio stream. These could be the audio equivalents of scene or camera changes,
cuts, fades and wipes. It should be possible to fuse data intelligently extracted from both
the video and audio streams, yielding more complete and robust information (about key
frames, for example) than is available from either mode alone. A group at the University of
Mannheim has been looking at the automatic analysis of �lm and video soundtracks. They
have presented a system for automatic �lm genre classi�cation based on low-level video
and long-term audio frequency and amplitude characteristics [35]. In more recent work,
they have attempted to automate violence detection in movie soundtracks by recognizing
shots, cries and explosions. This was done by matching characteristics such as amplitude,
frequency, and pitch [36].

3 Music and Audio Analysis

While ASR can give valuable clues to the content of speech, the universe of possible audio
is, of course, much wider than speech alone. Music is a large, and extremely variable (and
hence challenging) audio class11. Considering the range of sounds that people might want
to archive or classify, from the gamut of musical genres through sound e�ects to animal
cries to synthesizer samples, and it is clear that speech-based methods alone are woefully
inadequate for general audio discovery. Complicating the task is that any of the above
can and will occur in combination; e.g. a narrator speaks over music or natural sounds, a
translated version of a speech may be mixed over the original, and widely di�erent sounds
may occur sequentially in the same stream.

3.1 Music Discrimination

A general problem in audio analysis is to simply discriminate speech from non-vocal music
or other sounds. This has immediate applications for speech recognition: in general, there

11Few can even agree on a satisfactory de�nition of \music"; consider John Cage's controversial compo-
sition 4' 33" consisting of four minutes and thirty-three seconds of silent performance.
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is no guarantee that a given multimedia audio source contains speech, and it is important
not to waste valuable resources attempting to perform speech recognition on music, silence,
or other non-speech audio. A straightforward approach to discriminating music from speech
was presented by John Saunders [37] based on the statistics of the energy contour and
the zero-crossing rate. Saunders reports a 98% classi�cation accuracy on commercial radio
broadcasts. Eric Scheirer of the MIT Media Lab and Malcolm Slaney of Interval Research
report a speech/music discriminator based on various combinations of 13 features, such
as 4 Hz modulation energy, \spectral centroid," and zero-crossing rate [38]. Several clas-
si�cation strategies, including Gaussian mixture models and K-nearest-neighbor classi�ers
were evaluated. They report a 1.4% error rate on a large and diverse collection of FM
radio broadcasts, when looking at relatively long-term (2.4 s) windows. Michelle Spina and
Victor Zue of MIT's Spoken Language Systems Group report experiments on two hours of
NPR radio news[39]. Using a maximum a posteriori approach on mel-frequency cepstral
coe�cients, the authors report an 80.9% classi�cation accuracy into seven classes, including
clean, telephone, and noisy speech, silence, music, and speech plus music. They include a
plot of classi�cation performance versus window size, and report that a window size near
0.5 second resulted in optimal classi�cation. Finally, on a much less extensive data set
consisting of short samples (0.5 to 5 s) of music or speech, the author reports excellent
discrimination accuracy using a classi�er based on the statistics derived from a MMI-based
vector quantizer [40], albeit on a much smaller sample of audio clips.

4 Advanced Audio Interfaces

Arguably more useful than classifying audio would be a system that would let users �nd
audio items of interest, from either a large database of recordings or within a long recording
itself. This section presents approaches to audio information retrieval12. Many use the
\ranked list" user interface familiar from Web search engines. Even when a potentially
relevant audio item is found, there are better ways of browsing the audio than the \tape
recorder" metaphor, whose controls are typically limited to stop, play, and fast-forward and
rewind.

4.1 Speech Skimmer

Barry Arons's SpeechSkimmer is an excellent example of pushing audio interaction beyond
the tape recorder metaphor [41]. It has long been known that humans can understand
speech much quicker than the rate it is typically spoken. Using time-compression processing
that alters the audio playback rate without changing the pitch, SpeechSkimmer users can
audition spoken documents at several times real-time, as well as backwards. Pauses can be
identi�ed (and removed) by detecting speech, using an adaptive algorithm said to be robust
to background noise. In addition, the audio may be segmented by analyzing the speaker's
pitch to �nd cues associated with new topics, or by using speaker identi�cation to locate
conversational turns. SpeechSkimmer's hierarchy of summarization techniques enable, in
Aron's words, a \�sh ear" view of an audio document.

12Though an interesting topic, we will not consider mere playback interfaces that do not extract informa-
tion from the audio.

9



4.2 Audio Retrieval-by-Content

Given the proliferation of audio databases on the Internet and elsewhere (some commercial
sound e�ects libraries contain as many as 100 CDs), there is interest in doing for sound what
Web search engines do for text. This requires some measure of audio similarity, which is a
complicated and subjective matter. Measures of text similarity can be simple as counting the
number of words in common. Most approaches to general audio retrieval take a perceptual
approach, using measures derived from the audio that re
ect perceptual characteristics such
as brightness or loudness. A group at Technische Universit�at Berlin has used a neural net to
map a sound clip to a text description, which could be inverted to �nd sounds by description
[42]. An obvious drawback here is the subjective nature of audio descriptions. Sounds that
a particular listener describes as \sharp" may be quite di�erent from another's. A later
paper used a self-organizing map (SOM) on perceptually-derived spectral features [43]. The
net e�ect was to organize a set of 100 sample-synthesizer sounds into a 2-D matrix such
that similar sounds were closer and more disparate sounds were found further away on the
grid.

Work by a group at Muscle Fish LLC13 has resulted in a compelling audio retrieval-by-
similarity demonstration14. Muscle Fish's approach is to analyze sound �les for a speci�c set
of psychoacoustic features. This results in a vector of attributes that include loudness, pitch,
bandwidth and harmonicity [44]. Given enough training samples, a Gaussian classi�er can
be constructed, or for retrieval, a covariance-weighted Euclidean (Mahalonobis) distance is
used as a measure of similarity. For retrieval, the distance is computed between a given
sound example and all other sound examples (about 400 in the demonstration). Sounds are
ranked by distance, with the closer ones being more similar.

Recent work by the author, using an entirely di�erent approach, has resulted in similar
retrieval framework. Here distance measures are computed between histograms derived from
a discriminatively-trained vector quantizer. Audio is �rst parameterized into a spectral
representation (mel-frequency cepstral coe�cients). A learning algorithm then constructs a
quantization tree that attempts to put samples from di�erent training classes into di�erent
bins. A histogram of an audio �le can be made by looking at the relative frequencies
of samples in each quantization bin. If histograms are considered vectors, then simple
Euclidean or cosine measures can be used to determine similarity between them, and hence
their source audio [40]. This approach has been used for speaker identi�cation [45, 46] as
well as music and audio retrieval [47].

The Muscle Fish and author's retrieval performance have been compared on the same
audio corpus of 409 short sound �les [47]. When retrieving simple, mono-component sound
like isolated instrument samples, the Muscle Fish retrieved sounds of similar timbre but
varying pitch, while the author's approach retrieved sounds of similar pitch from instruments
of varying timbre. This demonstrates the subjective nature of audio similarity: it is not
clear which criterion is more important|the appropriate choice is probably application-
dependent. (Similarly for image retrieval, the relative importance of shape vs. color is not
clear.)

13http://www.muscle�sh.com
14http://www.muscle�sh.com/cbrdemo.html
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Figure 4: Example Muscle Fish audio retrieval results, searching for audio similar to \laugh-
ter" (from http://www.muscle�sh.com)
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Figure 5: Interface of Waikato tune retrieval application.

4.3 Music and MIDI retrieval

While information retrieval for text relies on simple text queries, the structure of a query for
sound or music is not so obvious. Though textual descriptions can be assigned to sounds,
they are not always obvious or indeed well-de�ned. The content-based retrieval applications
of the previous Section have avoided the problem somewhat by using audio examples as the
query, in e�ect saying \look for things that sound like this." Some recent work improves
on this by allowing the user to sing or whistle a desired tune. Pitch extraction algorithms
convert this to a note-like representation, which can be used to query a database of mu-
sic. Unfortunately, extracting score-like attributes for anything but the simplest pieces has
proved extremely di�cult. Researchers in the area have �nessed this problem by using
archives of MIDI (Musical Instrument Digital Interface) �les, which are score-like represen-
tations of music intended for musical synthesizers or sequencers. Given a melodic query,
then, the MIDI �les can be searched for similar melodies. Researchers at Cornell report sur-
prisingly e�ective retrieval using query melodies that have been quantized to three levels,
depending on whether each note was higher, lower, or similar pitch as the previous one [48].
Besides simplifying the pitch extraction, this allows for less-than-expert singing ability on
the part of the user! A similar, if more advanced, application has been developed the Uni-
versity of Waikato in New Zealand [49]. The Waikato system uses 
exible string-matching
algorithms to locate similar melodies located anywhere in a piece. Figure 5 (after McNab
et al. [50]) shows the recognized tune sung by the user on the top sta�, and the retrieved
musical tunes15.

15The tune retrieval application (for Macintosh computers) may be downloaded at
ftp://ftp.cs.waikato.ac.nz/pub/mac/MRv2.0.1.sea.hqx
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Figure 6: Video Mail Retrieval user interface. Search engine (left) and mail browser(right).

4.4 Video Mail Retrieval

As mentioned in Section 2.1, the VMR group at Cambridge University has used open-
vocabulary word spotting (based on phone lattices) to retrieve messages from an archive of
video mail. In operation, the user types in a text search query, exactly as in a Web search
engine. The lattice-based word spotter �nds instances of each query word spoken in each
message (if any). A matching score for each message is computed by the retrieval engine,
and the interface then displays a list of messages ranked by score. Scores are represented
by bar graphs, as in the left image of Figure 6 (after Brown et al. [51]).

After the ranked list of messages is displayed, the user must still investigate the listed
messages to either �nd the relevant one(s). The video mail browser (the right image for
Figure6) is an attempt to represent a dynamic time-varying process (the audio/video stream)
by a static image that can be taken in at a glance. A message is represented as horizontal
timeline, and events are displayed graphically along it. Putative keyword hits are displayed
along the timeline, as in Figure 6. The timeline is the black bar; the scale indicates time in
seconds. When pointed at with the mouse, keyword names are highlighted in white (so it
may be read in the presence of many other keyword hits). Clicking on the desired time in
the time bar starts message playback at that time; this lets the user selectively play regions
of interest, rather than the entire message.

4.5 Informedia

The Informedia project16 at Carnegie Mellon University is an impressive combination of
video and audio analysis and text-based information retrieval techniques [52, 28, 12]. Given
a video broadcast and a text transcription (from production notes; closed-captions are in-
su�ciently accurate), a HMM-based approach can accurately time-align the spoken words
with the transcript. The Informedia project uses this to provide a abstract of the video by
extracting both key frames from the video and important words from the text. Word impor-

16http://http://www.informedia.cs.cmu.edu/
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Figure 7: Informedia term weighting approach.

tance is determined from tf/idf weights, which stands for \term frequency/inverse document
frequency." Basically, terms (words) which appear frequently in a single document have a
high \term frequency" (tf) and are thus more important. Similarly, terms which appear
across many documents in the collection are less important, and have a lower \document
frequency" (df). The product of tf and the inverse of df gives a measure of word importance,
as shown in Figure 7. Extracting words with high tf/idf from the audio stream and con-
catenating them yields a digest that (hopefully) contains the gist of the audio, and which
can be auditioned extremely rapidly. Also conventional text-based retrieval techniques can
be used to locate desired broadcasts or relevant portions within them.

5 Future Directions

This paper has described some novel and powerful ways of extracting information from
audio data. Clearly there is a lot of room for further research. One promising direction is
the inclusion of Radio Broadcast News into the DARPA speech recognition evaluation e�ort
(CSRIV Hub-4). This will encourage speech recognition researchers to tackle the di�cult
problem of general audio, rather than just clean speech as has been the case with most
research to date. Audio information retrieval is also now a sub-task of the TREC (Text
Retrieval Conference), encouraging those in the text retrieval community to consider audio
as well. Some interesting work, somewhat beyond the scope of this review, is being done
in automatic translation of audio and text, as well as cross-language information retrieval.
A particularly exciting area is how to combine information from various modes, such as
audio and video. E�orts like that at the Informedia project hint at the power that fusing
low-level information from di�erent media can bring to the general problems of multimedia
recognition, segmentation, and retrieval. Research at Ryukoku University in Japan, which
deserves a wider audience, has pioneered combining video analysis and word spotting to
segment articles from TV news [53]. Finally, issues of scale will need to be addressed:
how well do various methods cope with vast numbers of large documents? As multimedia
archives proliferate on the WWW and elsewhere, technology like that presented here will
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be become indispensable to locate, retrieve, and browse audio and multimedia information.
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